示例#1
0
def transform(sta, dlon=None, dlat=None):
    #将站点形式的规则网格的数据转化为格点数据
    slon = np.min(sta['lon'])
    elon = np.max(sta['lon'])
    slat = np.min(sta['lat'])
    elat = np.max(sta['lat'])
    nsta = len(sta.index)
    if (dlon is None):
        for i in range(nsta - 1):
            dlon = sta.ix[i, 'lon'] - sta.ix[i + 1, 'lon']
            if dlon != 0:
                dlon = math.fabs(dlon)
                break
    if (dlat is None):
        for i in range(nsta - 1):
            dlat = sta.ix[i, 'lat'] - sta.ix[i + 1, 'lat']
            if dlat != 0:
                dlat = math.fabs(dlat)
                break

    ig = ((sta.ix[:, 'lon'] - slon) // dlon).astype(dtype='int16')
    jg = ((sta.ix[:, 'lat'] - slat) // dlat).astype(dtype='int16')
    grid0 = bd.grid([slon, elon, dlon], [slat, elat, dlat])
    dat = np.zeros((grid0.nlat, grid0.nlon))
    data_name = bd.get_data_names(sta)[0]
    dat[jg, ig] = sta.ix[:, data_name]
    grd = bd.grid_data(grid0, dat)
    return grd
示例#2
0
def sta_to_grid_idw(sta,
                    grid0,
                    background=None,
                    effectR=1000,
                    nearNum=16,
                    other_info='left'):
    data_name = bd.get_data_names(sta)
    if other_info == 'left':
        grid = bd.grid(grid0.glon, grid0.glat, [sta.ix[0, 'time']],
                       [sta.ix[0, 'dtime']], [sta.ix[0, 'level']], data_name)
    else:
        grid = grid0
    xyz_sta = lon_lat_to_cartesian(sta.ix[:, 'lon'],
                                   sta.ix[:, 'lat'],
                                   R=bd.const.ER)
    lon = np.arange(grid.nlon) * grid.dlon + grid.slon
    lat = np.arange(grid.nlat) * grid.dlat + grid.slat
    grid_lon, grid_lat = np.meshgrid(lon, lat)
    xyz_grid = lon_lat_to_cartesian(grid_lon.flatten(),
                                    grid_lat.flatten(),
                                    R=bd.const.ER)
    tree = cKDTree(xyz_sta)
    d, inds = tree.query(xyz_grid, k=nearNum)
    d += 1e-6
    w = 1.0 / d**2
    input_dat = sta.ix[:, 'data0'].values
    dat = np.sum(w * input_dat[inds], axis=1) / np.sum(w, axis=1)
    bg = bd.grid_data(grid)
    if (background is not None):
        bg = fun.gxy_gxy.linearInterpolation(background, grid)
    bg_dat = bg.values.flatten()
    dat = np.where(d[:, 0] > effectR, bg_dat, dat)
    grd = bd.grid_data(grid, dat)
    return grd
示例#3
0
def interpolation_linear(grd, sta, other_info='left'):
    grid = bd.get_grid_of_data(grd)
    sta1 = fun.get_from_sta.sta_in_grid_xy(sta, grid)
    dat0 = grd.values
    dat = np.squeeze(dat0)

    ig = ((sta1['lon'] - grid.slon) // grid.dlon).astype(dtype='int16')
    jg = ((sta1['lat'] - grid.slat) // grid.dlat).astype(dtype='int16')
    dx = (sta1['lon'] - grid.slon) / grid.dlon - ig
    dy = (sta1['lat'] - grid.slat) / grid.dlat - jg
    c00 = (1 - dx) * (1 - dy)
    c01 = dx * (1 - dy)
    c10 = (1 - dx) * dy
    c11 = dx * dy

    ig1 = np.minimum(ig + 1, grid.nlon - 1)
    jg1 = np.minimum(jg + 1, grid.nlat - 1)
    dat_sta = c00 * dat[jg, ig] + c01 * dat[jg, ig1] + c10 * dat[
        jg1, ig] + c11 * dat[jg1, ig1]
    data_name = bd.get_data_names(sta)[0]
    sta1.loc[:, data_name] = dat_sta[:]
    if other_info == 'left':
        sta1['time'] = grid.stime
        sta1['dtime'] = grid.sdtimedelta
        sta1['level'] = grid.levels[0]
        bd.set_data_name(sta1, grid.members[0])
    return sta1
示例#4
0
def ts(sta, threshold):
    data_names = bd.get_data_names(sta)
    ob = sta[data_names[0]].values
    fo_num = len(data_names) - 1

    ts_list = []
    for i in range(fo_num):
        fo = sta[data_names[i + 1]].values
        ts = yes_or_no.threshold_one.ts(ob, fo, threshold)
        ts_list.append(ts)
    if len(ts_list) == 1:
        ts_list = ts_list[0]
    return ts_list
示例#5
0
def interpolation_nearest(grd, sta, other_info='left'):
    grid = bd.get_grid_of_data(grd)
    sta1 = fun.get_from_sta.sta_in_grid_xy(sta, grid)
    dat0 = grd.values
    dat = np.squeeze(dat0)

    ig = np.round((sta1['lon'] - grid.slon) // grid.dlon).astype(dtype='int16')
    jg = np.round((sta1['lat'] - grid.slat) // grid.dlat).astype(dtype='int16')

    dat_sta = dat[jg, ig]
    data_name = bd.get_data_names(sta)[0]
    sta1.loc[:, data_name] = dat_sta[:]
    if other_info == 'left':
        sta1['time'] = grid.stime
        sta1['dtime'] = grid.sdtimedelta
        sta1['level'] = grid.levels[0]
        bd.set_data_name(sta1, grid.members[0])
    return sta1
def write_to_micaps3(sta0, filename="a.txt", type=1, effectiveNum=4):
    try:
        sta = copy.deepcopy(sta0)
        dir = os.path.split(os.path.abspath(filename))[0]
        if os.path.isdir(dir):
            br = open(filename, 'w')
            end = len(filename)
            start = max(0, end - 16)
            nsta = len(sta.index)
            time = sta['time'].iloc[0]
            if isinstance(time, np.datetime64) or isinstance(
                    time, datetime.datetime):
                time_str = method.time_tools.time_to_str(time)
                time_str = time_str[0:4] + " " + time_str[
                    4:6] + " " + time_str[6:8] + " " + time_str[8:10] + " "
            else:
                time_str = "2099 01 01 0 0 "

            level = int(sta['level'].iloc[0])
            if type < 0 or level == np.NaN or level == pd.NaT:
                level = int(type)

            str1 = ("diamond 3 " + filename[start:end] + "\n" + time_str +
                    str(level) + " 0 0 0 0\n1 " + str(nsta) + "\n")
            br.write(str1)
            br.close()
            data_name = bd.get_data_names(sta)[0]
            df = sta[['id', 'lon', 'lat', 'alt', data_name]]
            effectiveNum_str = "%." + '%d' % effectiveNum + "f"
            df.to_csv(filename,
                      mode='a',
                      header=None,
                      sep="\t",
                      float_format=effectiveNum_str,
                      index=None)

    except (Exception, BaseException) as e:
        exstr = traceback.format_exc()
        print(exstr)
        return None
示例#7
0
def cubicInterpolation(grd, sta, other_info='left'):
    grid = bd.get_grid_of_data(grd)
    sta1 = fun.get_from_sta_data.sta_in_grid_xy(sta, grid)
    dat0 = grd.values
    dat = np.squeeze(dat0)
    ig = ((sta1['lon'] - grid.slon) // grid.dlon).astype(dtype='int16')
    jg = ((sta1['lat'] - grid.slat) // grid.dlat).astype(dtype='int16')
    dx = (sta1['lon'] - grid.slon) / grid.dlon - ig
    dy = (sta1['lat'] - grid.slat) / grid.dlat - jg
    data_name = bd.get_data_names(sta1)[0]
    for p in range(-1, 3, 1):
        iip = np.minimum(np.maximum(ig + p, 0), grid.nlon - 1)
        fdx = cubic_f(p, dx)
        for q in range(-1, 3, 1):
            jjq = np.minimum(np.maximum(jg + q, 0), grid.nlat - 1)
            fdy = cubic_f(q, dy)
            fdxy = fdx * fdy
            sta1[data_name] += fdxy * dat[jjq, iip]
    if other_info == 'left':
        sta1['time'] = grid.stime
        sta1['dtime'] = grid.sdtimedelta
        sta1['level'] = grid.levels[0]
        bd.set_data_name(sta1, grid.members[0])
    return sta1
示例#8
0
def sta_to_grid_oa2(sta0, background, sm=1, effect_R=1000, rate_of_model=0):

    sta = fun.sxy_sxy.drop_nan(sta0)
    data_name = bd.get_data_names(sta)[0]
    grid = bd.get_grid_of_data(background)
    sta = fun.get_from_sta.sta_in_grid_xy(sta, grid)
    #print(sta)
    grd = background.copy()
    dat = np.squeeze(grd.values)

    ig = ((sta.ix[:, 'lon'] - grid.slon) // grid.dlon).astype(dtype='int16')

    jg = ((sta.ix[:, 'lat'] - grid.slat) // grid.dlat).astype(dtype='int16')

    dx = (sta.ix[:, 'lon'] - grid.slon) / grid.dlon - ig

    dy = (sta.ix[:, 'lat'] - grid.slat) / grid.dlat - jg

    c00 = (1 - dx) * (1 - dy)

    c01 = dx * (1 - dy)

    c10 = (1 - dx) * dy

    c11 = dx * dy

    lat = np.arange(grid.nlat) * grid.dlat + grid.slat

    sr = 1 / np.power(np.cos(lat * math.pi / 180), 4)

    def targe(x):

        grdv = x.reshape(grid.nlat, grid.nlon)

        dx = grdv[:, :-2] + grdv[:, 2:] - 2 * grdv[:, 1:-1]

        cost1 = np.sum(dx * dx)

        dy = grdv[:-2, :] + grdv[2:, :] - 2 * grdv[1:-1, :]

        dy2 = dy * dy

        sum_dy = np.sum(dy2, axis=1)

        cost1 = cost1 + np.dot(sum_dy, sr[1:-1])

        sta_g = c00 * dat[jg, ig] + c01 * dat[jg, ig + 1] + c10 * dat[
            jg + 1, ig] + c11 * dat[jg + 1, ig + 1]

        error = sta.ix[:, 7] - sta_g

        cost2 = np.sum(error * error)

        cost = sm * cost1 + cost2

        return cost

    def grads(x):

        grdv = x.reshape(grid.nlat, grid.nlon)

        g1 = np.zeros(grdv.shape)

        dx = 2 * (grdv[:, :-2] + grdv[:, 2:] - 2 * grdv[:, 1:-1])

        g1[:, :-2] = dx

        g1[:, 2:] += dx

        g1[:, 1:-1] -= 2 * dx

        sr_expend = np.tile(sr[1:-1], [grid.nlon, 1]).T

        dy = 2 * (grdv[:-2, :] + grdv[2:, :] - 2 * grdv[1:-1, :])

        dy_sr = dy * sr_expend

        g1[:-2, :] += dy_sr

        g1[2:, :] += dy_sr

        g1[1:-1, :] -= 2 * dy_sr

        g2 = np.zeros(grdv.shape)

        sta_g = c00 * dat[jg, ig] + c01 * dat[jg, ig + 1] + c10 * dat[
            jg + 1, ig] + c11 * dat[jg + 1, ig + 1]

        d = 2 * (sta_g - sta.ix[:, 7])

        g2[jg, ig] += d * c00

        g2[jg, ig + 1] += d * c01

        g2[jg + 1, ig] += d * c10

        g2[jg + 1, ig + 1] += d * c11

        g = sm * g1 + g2

        return g.reshape(-1)

    x = grd.values.reshape(-1)

    x_oa = frprmn2(x, targe, grads)

    grd.values = x_oa.reshape(1, 1, 1, 1, grid.nlat, grid.nlon)

    return grd