示例#1
0
def mutation_tutorial(datasets,
                      attack,
                      sample_path,
                      store_path,
                      model_path,
                      level=1,
                      test_num=100,
                      mutation_number=1000,
                      mutated=False):
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_path + datasets)

    sample_path = sample_path + attack + '/' + datasets
    # sample_path = '../mt_result/mnist_jsma/adv_jsma'
    [image_list, image_files, real_labels,
     predicted_labels] = utils.get_data_mutation_test(sample_path)
    count = 0
    for i in range(len(image_list)):
        ori_img = preprocess_image_1(image_list[i].astype('float64'))
        ori_img = np.expand_dims(ori_img.copy(), 0)
        p = model_argmax(sess, x, preds, ori_img, feed=feed_dict)
        if p != predicted_labels[i]:
            count = count + 1
            image_file = image_files[i]
            os.remove("../datasets/adversary/" + attack + '/' + datasets +
                      '/' + image_file)
            # os.remove(sample_path + '/' + image_file)

    # Close TF session
    print(count)
    sess.close()
    print('Finish.')
示例#2
0
def mr(datasets, model, samples_path):
    """
    :param datasets
    :param model
    :param samples_path
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)
    sess, preds, x, y, model, feed_dict = model_load(datasets, model)

    preds_test = np.asarray([])
    n_batches = int(np.ceil(1.0 * X_test.shape[0] / 256))
    for i in range(n_batches):
        start = i * 256
        end = np.minimum(len(X_test), (i + 1) * 256)
        preds_test = np.concatenate(
            (preds_test, model_argmax(sess, x, preds, X_test[start:end], feed=feed_dict)))
    inds_correct = np.asarray(np.where(preds_test != Y_test.argmax(axis=1))[0])
    X_test = X_test[inds_correct]

    [image_list, image_files, real_labels, predicted_labels] = get_data_file(samples_path)
    for a in ua:
        if a in samples_path:
            result = len(image_files) / len(X_test)
            print('misclassification ratio is %.4f' % (result))
            return result

    for a in ta:
        if a in samples_path:
            result = len(image_files) / (len(X_test) * (nb_classes - 1))
            print('misclassification ratio is %.4f' % (result))
            return result
示例#3
0
def actc(datasets, model, samples_path, epoch=49):
    """
    :param datasets
    :param model
    :param samples_path
    :return:
    """
    # Object used to keep track of (and return) key accuracies
    tf.reset_default_graph()
    sess, preds, x, y, model, feed_dict = model_load(datasets, model, epoch=epoch)

    [image_list, image_files, real_labels, predicted_labels] = get_data_file(samples_path)

    #samples = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list])
    samples=np.asarray(image_list)
    pbs = []
    n_batches = int(np.ceil(samples.shape[0] / 256))
    for i in range(n_batches):
        start = i * 256
        end = np.minimum(len(samples), (i + 1) * 256)
        feed = {x: samples[start:end]}
        if feed_dict is not None:
            feed.update(feed_dict)
        probabilities = sess.run(preds, feed)
        for j in range(len(probabilities)):
            pbs.append(probabilities[j][real_labels[start+j]])
    result = sum(pbs) / len(pbs)
    print('average confidence of true class %.4f' %(result))

    # Close TF session
    sess.close()

    return result
示例#4
0
def write_txt(file,epochs):
    string = file.split('_')
    datasets = string[0]
    model_name = string[1]

    factor = string[2] + '_' + string[3] + '_' + string[4]
    filters_dict = {}

    f = open('../filter1/filter_euclidean/' + datasets + '_' + model_name + '_' + factor + '_' + str(epochs) + '.txt',
             'w')
    f_layers = open('../filter1/filter_euclidean/' + datasets + '_' + model_name + '_' + factor + '_layers' + '.txt',
                    'w')
    for epoch in range(epochs):
        tf.reset_default_graph()
        sess, preds, x, y, model, feed_dict = model_load(datasets=datasets, model_name=model_name, de=False,
                                                         attack='fgsm',
                                                         epoch=epoch, others=factor)
        filters_dict[epoch] = get_filters(sess, model)
        sess.close()
        del sess, preds, x, y, model, feed_dict
        gc.collect()
        x, y = data_process(filters_dict[epoch][0], filters_dict[epoch][-1])
        f.write(str(epoch) + ' ' + str(np.linalg.norm(x - y)))
        f.write('\n')

        f_layers.write(str(epoch) )
        for num in range(len(filters_dict[epoch])):
            x, y = data_process(filters_dict[epoch][0], filters_dict[epoch][num])
            f_layers.write(' ' +str(np.linalg.norm(x - y)))
        f_layers.write('\n')

    compare_epochs(filters_dict,datasets=datasets, model_name=model_name,others=factor)
示例#5
0
def calculate_lid(datasets, model_path, sample_path, attack, k_nearest,
                  batch_size):
    """
    Load multiple characteristics for one dataset and one attack.
    :param dataset: 
    :param attack: 
    :param characteristics: 
    :return: 
    """
    # Load the model
    sess, preds, x, y, model, feed_dict = model_load(datasets, model_path)

    [X_test_adv_train, adv_image_files, real_labels, predicted_labels
     ] = utils.get_data_mutation_test("../datasets/experiment/" + datasets +
                                      "/" + attack + "/train")
    [X_test_adv_test, adv_image_files, real_labels, predicted_labels
     ] = utils.get_data_mutation_test("../datasets/experiment/" + datasets +
                                      "/" + attack + "/test")
    train_num = len(X_test_adv_train)
    test_num = len(X_test_adv_test)
    X_test_adv = preprocess_image_1(
        np.concatenate((np.asarray(X_test_adv_train),
                        np.asarray(X_test_adv_test))).astype('float32'))
    if len(X_test_adv.shape) < 4:
        X_test_adv = np.expand_dims(X_test_adv, axis=3)

    [X_test_train, adv_image_files, real_labels,
     predicted_labels] = utils.get_data_normal_test("../datasets/experiment/" +
                                                    datasets + "/normal/train")
    [X_test_test, adv_image_files, real_labels,
     predicted_labels] = utils.get_data_normal_test("../datasets/experiment/" +
                                                    datasets + "/normal/test")
    X_test_train = np.asarray(X_test_train)[np.random.choice(len(X_test_train),
                                                             train_num,
                                                             replace=False)]
    X_test_test = np.asarray(X_test_test)[np.random.choice(len(X_test_test),
                                                           test_num,
                                                           replace=False)]
    X_test = preprocess_image_1(
        np.concatenate((np.asarray(X_test_train),
                        np.asarray(X_test_test))).astype('float32'))
    if len(X_test.shape) < 4:
        X_test = np.expand_dims(X_test, axis=3)

    file_name = os.path.join('../detection/lid/',
                             "%s_%s.npy" % (datasets, attack))
    if not os.path.exists(file_name):
        # extract local intrinsic dimensionality
        characteristics, labels = get_lid(sess, x, model, feed_dict, X_test,
                                          X_test_adv, k_nearest, batch_size,
                                          datasets)
        data = np.concatenate((characteristics, labels), axis=1)
        np.save(file_name, data)
    return train_num
示例#6
0
def mr(datasets, model_name, attack, va, epoch=49):
    """
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)
    sample = X_test
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch)
    probabilities = model_prediction(sess,
                                     x,
                                     preds,
                                     sample,
                                     feed=feed_dict,
                                     datasets=datasets)

    if sample.shape[0] == 1:
        current_class = np.argmax(probabilities)
    else:
        current_class = np.argmax(probabilities, axis=1)
    # only for correct:
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)
    print(len(acc_pre_index))
    sess.close()
    total = 0

    if attack == 'fgsm':

        samples_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/' + str(
            va)
        [image_list, image_files, real_labels,
         predicted_labels] = get_data_file(samples_path)
        num = len(image_list)
        return num / len(acc_pre_index)
    else:
        total = 0
        for tar in range(0, nb_classes):
            samples_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/' + str(
                va) + '_' + str(tar)
            [image_list, image_files, real_labels,
             predicted_labels] = get_data_file(samples_path)
            total += len(image_list)
        return total / len(acc_pre_index)
示例#7
0
文件: cr.py 项目: asplos2020/DRTest
def correct(datasets, model_name, X_test, Y_test, de=False, attack='fgsm', epoch=49):
    tf.reset_default_graph()
    sess, preds, x, y, model, feed_dict = model_load(datasets=datasets, model_name=model_name, de=de, attack=attack, epoch=epoch)
    preds_test = np.asarray([])
    n_batches = int(np.ceil(1.0 * X_test.shape[0] / 256))
    for i in range(n_batches):
        start = i * 256
        end = np.minimum(len(X_test), (i + 1) * 256)
        preds_test = np.concatenate(
            (preds_test, model_argmax(sess, x, preds, X_test[start:end], feed=feed_dict)))
    inds_correct = np.asarray(np.where(preds_test == Y_test.argmax(axis=1))[0])
    sess.close()
    tf.reset_default_graph()
    return inds_correct
示例#8
0
def pure(datasets='mnist', attack='fgsm', model_name='lenet1'):
    tf.reset_default_graph()
    samples_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/pure'
    if not os.path.isdir(samples_path):
        os.makedirs(samples_path + '/train')
        os.makedirs(samples_path + '/test')

    samples_path_train = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/train_data'
    samples_path_test = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/test_data'

    sess, preds, x, y, model, feed_dict = model_load(datasets, model_name)

    [
        image_list_train, image_files_train, real_labels_train,
        predicted_labels_train
    ] = get_data_file(samples_path_train)
    [
        image_list_test, image_files_test, real_labels_test,
        predicted_labels_test
    ] = get_data_file(samples_path_test)

    #samples_train = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list_train])
    #samples_test = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list_test])
    samples_train = np.asarray(image_list_train)
    samples_test = np.asarray(image_list_test)

    probabilities_train = model_prediction(sess,
                                           x,
                                           preds,
                                           samples_train,
                                           feed=feed_dict)
    probabilities_test = model_prediction(sess,
                                          x,
                                          preds,
                                          samples_test,
                                          feed=feed_dict)

    for i in range(0, samples_train.shape[0]):
        if predicted_labels_train[i] == np.argmax(probabilities_train[i]):
            pure_train = samples_path + '/train/' + image_files_train[i]
            #imsave(pure_train, image_list_train[i])
            np.save(pure_train, image_list_train[i])

    for i in range(0, samples_test.shape[0]):
        if predicted_labels_test[i] == np.argmax(probabilities_test[i]):
            pure_test = samples_path + '/test/' + image_files_test[i]
            #imsave(pure_test, image_list_test[i])
            np.save(pure_test, image_list_test[i])
示例#9
0
def cw(datasets, sample, model_name, target,
       store_path='../mt_result/integration/cw/mnist'):
    """
    Carlini and Wagner's attack
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    sess, preds, x, y, model, feed_dict = model_load(datasets, model_name)

    ###########################################################################
    # Craft adversarial examples using Carlini and Wagner's approach
    ###########################################################################
	'''
示例#10
0
def test_adv(datasets, model_name, samples_path, de=True, attack='fgsm', epoch=9):
    [image_list, _, real_labels, _] = get_data_file(samples_path)
    tf.reset_default_graph()
    sess, preds, x, y, model, feed_dict = model_load(datasets=datasets, model_name=model_name, de=de, attack=attack,
                                                     epoch=epoch)

    def y_one_hot(label):
        y = np.zeros(10)
        y[label] = 1
        return y

    eval_params = {'batch_size': 256}

    labels_adv = np.asarray([y_one_hot(int(label)) for label in real_labels])

    accuracy = model_eval(sess,x,y,preds,np.asarray(image_list), labels_adv, feed_dict, eval_params)
    print(accuracy)
示例#11
0
def main(argv=None):
    datasets = FLAGS.datasets
    attack_type = FLAGS.attack_type

    # detector config
    k_nor = FLAGS.k_nor
    mu = FLAGS.mu
    level = FLAGS.level
    max_mutations = FLAGS.max_iteration
    normal = False

    indifference_region_ratio = mu - 1
    alpha = 0.05
    beta = 0.05
    if 'mnist' == datasets:
        rgb = False
        image_rows = 28
        image_cols = 28
    elif 'cifar10' == datasets:
        rgb = True
        image_rows = 32
        image_cols = 32

    print('--- Dataset: ', datasets, 'attack type: ', attack_type)

    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     FLAGS.model_name,
                                                     FLAGS.epoch)

    adv_image_dir = FLAGS.sample_path + '/' + attack_type + '/test'
    if attack_type.__eq__('normal'):
        normal = True

    store_path = FLAGS.store_path + datasets + '_' + attack_type + '/level=' + str(level)+',mm=' + \
                     str(max_mutations) + '/mu=' + str(mu) + ',irr=' + str(indifference_region_ratio)

    # Detection
    ad = detector(k_nor, mu, image_rows, image_cols, level, rgb, max_mutations,
                  alpha, beta, k_nor * indifference_region_ratio)
    print('--- Detector config: ', ad.print_config())
    directory_detect(datasets, adv_image_dir, normal, store_path, ad, sess,
                     preds, x, feed_dict)
示例#12
0
def acc(datasets, model_name, target, attack):
    """
    Carlini and Wagner's attack
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name,de=True, epoch=target, attack=attack)
    sess, preds, x, y, model, feed_dict = model_load(datasets, model_name, epoch=9)
    # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name, de=False, epoch=target, attack=attack)
    print(datasets)
    print('load successfule')
    eval_params = {'batch_size':256}
    accuracy = model_eval(sess, x, y, preds, X_test, Y_test, args=eval_params, feed=feed_dict)

    sess.close()

    # tf.reset_default_graph()
    # X_train, Y_train, X_test, Y_test = get_data(datasets)
    # # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name,de=True, epoch=target, attack=attack)
    # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name, epoch=64)
    # # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name, de=False, epoch=target, attack=attack)
    # print(datasets)
    # print('load successfule')
    # eval_params = {'batch_size': 256}
    #
    # preds_test = np.asarray([])
    # n_batches = int(np.ceil(1.0 * X_test.shape[0] / 256))
    # for i in range(n_batches):
    #     start = i * 256
    #     end = np.minimum(len(X_test), (i + 1) * 256)
    #     preds_test = np.concatenate(
    #         (preds_test, model_argmax(sess, x, preds, X_test[start:end], feed=feed_dict)))
    # inds_correct = np.asarray(np.where(preds_test == Y_test.argmax(axis=1))[0])
    print(accuracy)
    return accuracy#, len(inds_correct)
示例#13
0
def jsma(datasets, sample_path, model_path='../models/integration/mnist'):
    """
    the Jacobian-based saliency map approach (JSMA)
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    sess, preds, x, y, model, feed_dict = model_load(datasets, model_path)

    ###########################################################################
    # Craft adversarial examples using the Jacobian-based saliency map approach
    ###########################################################################
    [X_test_adv, adv_image_files, real_labels,
     predicted_labels] = utils.get_data_mutation_test(sample_path)
    import os
    for i in range(len(adv_image_files)):
        temp = adv_image_files[i].split('_')[-4]
        if os.path.exists("../datasets/integration/batch_attack/cifar10/" +
                          str(temp) + '.png'):
            os.remove("../datasets/integration/batch_attack/cifar10/" +
                      str(temp) + '.png')
示例#14
0
def nte(datasets, model, samples_path, epoch=49):
    """
    :param datasets
    :param model
    :param samples_path
    :return:
    """
    tf.reset_default_graph()
    # Object used to keep track of (and return) key accuracies
    sess, preds, x, y, model, feed_dict = model_load(datasets, model, epoch=epoch)

    [image_list, image_files, real_labels, predicted_labels] = get_data_file(samples_path)

    samples = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list])
    samples = np.asarray(image_list)
    pbs = []
    n_batches = int(np.ceil(samples.shape[0] / 256))
    for i in range(n_batches):
        start = i * 256
        end = np.minimum(len(samples), (i + 1) * 256)
        feed = {x: samples[start:end]}
        if feed_dict is not None:
            feed.update(feed_dict)
        probabilities = sess.run(preds, feed)
        #print(probabilities[1])
        for j in range(len(probabilities)):
            pro_adv_max=probabilities[j][predicted_labels[start+j]]
            temp=np.delete(probabilities[j], predicted_labels[start+j], axis=0)
            pro_adv_top2=np.max(temp)
            pbs.append(pro_adv_max-pro_adv_top2)
    result = sum(pbs) / len(pbs)
    print('Noise Tolerance Estimation  %.4f' %(result))

    # Close TF session
    sess.close()

    return result
示例#15
0
def write_ee1(file,epochs):
    # 计算每个模型/每一个模型的最后一层和第一层filter差距的欧式距离
    string = file.split('_')
    datasets = string[0]
    model_name = string[1]

    factor = string[2] + '_' + string[3] + '_' + string[4]
    filters_dict = {}

    f = open('../filter1/filter_euclidean/' + datasets + '_' + model_name + '_' + factor + '_ee1' + '.txt','w')
    epoch_df = {}
    for epoch in range(epochs):
        tf.reset_default_graph()
        sess, preds, x, y, model, feed_dict = model_load(datasets=datasets, model_name=model_name, de=False,
                                                         attack='fgsm',
                                                         epoch=epoch, others=factor)
        filters_dict[epoch] = get_filters(sess, model)
        sess.close()
        del sess, preds, x, y, model, feed_dict
        gc.collect()
        x, y = data_process(filters_dict[epoch][0], filters_dict[epoch][-1])
        epoch_df[epoch] = np.linalg.norm(x - y)

    layer_epoch = {}
    for key in filters_dict.keys():
        for i in range(len(filters_dict[key])):
            if i not in layer_epoch.keys():
                layer_epoch[i] = []
            layer_epoch[i].append(filters_dict[key][i])

    for key in layer_epoch.keys():
        filters = layer_epoch[key]
        f.write(str(key))
        for i in range(len(filters)):
            f.write(' ' + str(np.linalg.norm((filters[0]-abs(epoch_df[0]))/abs(epoch_df[0]) - (filters[i]-abs(epoch_df[i]))/abs(epoch_df[i]))))
        f.write('\n')
示例#16
0
def bim(datasets,
        sample,
        model_name,
        store_path,
        step_size='0.3',
        batch_size=256,
        epoch=9):
    """
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)

    print(epoch)
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch)

    ###########################################################################
    # Craft adversarial examples using the BIM approach
    ###########################################################################
    # Initialize the Basic Iterative Method (BIM) attack object and
    # graph
    '''
    if 'mnist' == datasets:
        #sample = np.asarray([np.asarray(imread(sample_path)).reshape(28,28,1)]).astype('float32')
        #sample = preprocess_image_1(sample)
        print('1')
    elif 'cifar10' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'svhn' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    #print(sample.shape)
    '''

    probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)

    if sample.shape[0] == 1:
        current_class = np.argmax(probabilities)
    else:
        current_class = np.argmax(probabilities, axis=1)

    if not os.path.exists(store_path):
        os.makedirs(store_path)

    # only for correct:
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)

    sample_acc = np.zeros(shape=(len(acc_pre_index), input_shape[1],
                                 input_shape[2], input_shape[3]),
                          dtype='float32')
    probabilities_acc = np.zeros(shape=(len(acc_pre_index), nb_classes),
                                 dtype='float32')
    current_class_acc = np.zeros(shape=(len(acc_pre_index)), dtype=int)

    for i in range(0, len(acc_pre_index)):
        sample_acc[i] = sample[acc_pre_index[i]]
        probabilities_acc[i] = probabilities[acc_pre_index[i]]
        current_class_acc[i] = current_class[acc_pre_index[i]]
    print('Start generating adv. example')
    #print(float(step_size))
    if 'mnist' == datasets:
        bim_params = {
            'eps': float(step_size),
            'eps_iter': float(step_size) / 6,
            'clip_min': 0.,
            'clip_max': 1.
        }
    elif 'cifar10' == datasets:
        bim_params = {
            'eps': float(step_size),
            'eps_iter': float(step_size) / 6,
            'clip_min': 0.,
            'clip_max': 1.
        }
    elif 'svhn' == datasets:
        bim_params = {
            'eps': float(step_size),
            'eps_iter': float(step_size) / 6,
            'clip_min': 0.,
            'clip_max': 1.
        }
    bim = BasicIterativeMethod(model, sess=sess)
    adv_x = bim.generate(x, **bim_params)

    nb_batches = int(math.ceil(float(sample_acc.shape[0]) / batch_size))
    suc = 0
    for batch in range(nb_batches):
        #start, end = batch_indices(batch, sample_acc.shape[0], batch_size)
        print(batch)
        start = batch * batch_size
        end = (batch + 1) * batch_size
        if end > sample_acc.shape[0]:
            end = sample_acc.shape[0]
        adv = sess.run(adv_x,
                       feed_dict={
                           x: sample_acc[start:end],
                           y: probabilities_acc[start:end]
                       })

        #adv_img_deprocessed = deprocess_image_1(adv)
        #adv:float 0-1 numpy.save("filename.npy",a)

        # Check if success was achieved
        #probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)
        new_class_label = model_argmax(
            sess, x, preds, adv,
            feed=feed_dict)  # Predicted class of the generated adversary
        for i in range(0, len(new_class_label)):
            j = batch * batch_size + i
            if new_class_label[i] != current_class_acc[j]:
                suc += 1
                path = store_path + '/' + str(acc_pre_index[j]) + '_' + str(
                    time.time() * 1000) + '_' + str(
                        current_class_acc[j]) + '_' + str(new_class_label[i])
                np.save(path, adv[i])
                # adv_img_deprocessed = deprocess_image_1(adv[i:i+1])
                # adv_img_deprocessed=adv_img_deprocessed.reshape(adv_img_deprocessed.shape[1],adv_img_deprocessed.shape[2])
                # path =  store_path + '/' + str(acc_pre_index[j]) + '_' + str(time.time()*1000) + '_' + str(current_class_acc[j]) + '_' + str(new_class_label[i])+'.png'
                #print(adv[i].shape)
                # imsave(path, adv_img_deprocessed)
    # Close TF session
    sess.close()

    return suc, len(acc_pre_index)
示例#17
0
def mcdc(datasets,
         model_name,
         samples_path,
         de='False',
         attack='fgsm',
         just_adv=False,
         epoch=9):
    X_train, Y_train, X_test, Y_test = get_data(datasets)

    samples = X_test
    if samples_path not in ['test']:
        if not just_adv:
            [image_list, _, _, _] = get_data_file(samples_path)
            samples_adv = np.asarray(image_list)
            samples = np.concatenate((samples, samples_adv))
            print("Combine data")
        else:
            [image_list, _, _, _] = get_data_file(samples_path)
            samples = np.asarray(image_list)
            print("Just adv")

    tf.reset_default_graph()
    sess, preds, x, y, model, feed_dict = model_load(datasets=datasets,
                                                     model_name=model_name,
                                                     de=de,
                                                     attack=attack,
                                                     epoch=epoch)
    # dict = model.fprop(x)

    layer_names = model.layer_names
    sess.close()
    del sess, preds, x, y, model, feed_dict
    gc.collect()

    l = 0
    ss = []
    sc_pr = []
    neuron = []
    for key in layer_names:  #model.layer_names:
        if 'ReLU' in key or 'probs' in key:
            print(l)
            tf.reset_default_graph()
            sess, preds, x, y, model, feed_dict = model_load(
                datasets=datasets,
                model_name=model_name,
                de=de,
                attack=attack,
                epoch=epoch)
            dict = model.fprop(x)

            tensor = dict[key]
            neuron.append(tensor.shape[-1])
            layer_output = []
            n_batches = int(np.ceil(1.0 * samples.shape[0] / 256))
            for batch in range(n_batches):
                start = batch * 256
                end = np.minimum(len(samples), (batch + 1) * 256)
                feed = {x: samples[start:end]}
                if feed_dict is not None:
                    feed.update(feed_dict)
                # v = sess.run(tensor, feed_dict=feed)
                layer_output = layer_output + sess.run(
                    tensor, feed_dict=feed).tolist()

            sess.close()
            del sess, preds, x, y, model, feed_dict
            gc.collect()

            layer_output = np.asarray(layer_output)
            layer_sign = np.zeros(
                (layer_output.shape[0], layer_output.shape[-1]))
            for num in range(len(layer_output)):
                for num_neuron in xrange(layer_output[num].shape[-1]):
                    if np.mean(layer_output[num][..., num_neuron]) > 0.0:
                        layer_sign[num][num_neuron] = 1

            del layer_output
            gc.collect()

            if l == 0:
                for i in range(len(samples) - 1):
                    temp = []
                    for j in range(i + 1, len(samples)):
                        sc = xor(layer_sign[i], layer_sign[j])
                        if len(sc) > 1:
                            sc = []
                        temp.append(sc)
                    sc_pr.append(temp)
            else:
                for i in range(len(samples) - 1):
                    for j in range(i + 1, len(samples)):
                        sc = xor(layer_sign[i], layer_sign[j])
                        if len(sc_pr[i][j - i - 1]) == 1:
                            n_pr = str(l) + '_' + str(sc_pr[i][j - i - 1])
                            for n in sc:
                                n = str(l + 1) + '_' + str(n)
                                combination = tuple([n_pr, n])
                                if combination not in ss:
                                    # ss.append(tuple([n_pr, n]))
                                    ss.append(combination)
                        if len(sc) > 1:
                            sc = []
                        sc_pr[i][j - i - 1] = sc
            l = l + 1
    total = 0
    for i in range(len(neuron) - 1):
        total = total + int(neuron[i]) * int(neuron[i + 1])

    print(1.0 * len(set(ss)) / total)
    return 1.0 * len(set(ss)) / total
示例#18
0
def ct(datasets,
       model_name,
       samples_path,
       t=2,
       p=0.5,
       de='False',
       attack='fgsm',
       just_adv=False,
       epoch=9):
    X_train, Y_train, X_test, Y_test = get_data(datasets)

    samples = X_test
    if samples_path not in ['test']:
        if not just_adv:
            [image_list, _, _, _] = get_data_file(
                samples_path)  #image_files, real_labels, predicted_labels
            samples_adv = np.asarray(image_list)
            samples = np.concatenate((samples, samples_adv))
            print("Combine data")
        else:
            [image_list, _, _, _] = get_data_file(
                samples_path)  #image_files, real_labels, predicted_labels
            samples = np.asarray(image_list)
            print("Just adv")

    tf.reset_default_graph()
    sess, preds, x, y, model, feed_dict = model_load(datasets=datasets,
                                                     model_name=model_name,
                                                     de=de,
                                                     attack=attack,
                                                     epoch=epoch)
    layers_combination = neuron_combination(t, model, x)
    sess.close()
    del sess, preds, x, y, model, feed_dict
    gc.collect()

    n_batches = int(np.ceil(1.0 * samples.shape[0] / 512))
    for num in range(n_batches):
        print(num)
        start = num * 512
        end = np.minimum(len(samples), (num + 1) * 512)
        batch_samples = samples[start:end]
        tf.reset_default_graph()
        sess, preds, x, y, model, feed_dict = model_load(datasets=datasets,
                                                         model_name=model_name,
                                                         de=de,
                                                         attack=attack,
                                                         epoch=epoch)
        layers_activation = cal_activation(sess, x, batch_samples, model,
                                           feed_dict)
        sess.close()
        del sess, preds, x, y, model, feed_dict, batch_samples
        gc.collect()

        layers_combination = update_combination(layers_combination,
                                                layers_activation, t)

    sparse = 0
    dense = 0
    p_completeness = 0
    total = 0
    t_t = pow(2, t)
    completeness = 1.0 * t_t * p
    for layer in layers_combination:
        total += len(layer)
        for combination in layer:
            s = sum(combination)
            dense += s
            if s >= completeness:
                p_completeness += 1
            if combination == np.ones(t_t).astype('int').tolist():
                sparse += 1

    sparse_coverage = 1.0 * sparse / total
    dense_coverage = 1.0 * dense / (t_t * total)
    pt_completeness = 1.0 * p_completeness / total

    print([sparse_coverage, dense_coverage, pt_completeness])
    return [sparse_coverage, dense_coverage, pt_completeness]
示例#19
0
def jsma(datasets,
         sample,
         model_name,
         target,
         store_path,
         gamma=0.1,
         start=0,
         end=10000,
         batch_size=32,
         epoch=9,
         mu=False,
         mu_var='gf',
         de=False,
         attack='fgsm'):
    """
    the Jacobian-based saliency map approach (JSMA)
    :param datasets
    :param sample: inputs to attack
    :param target: the class want to generate
    :param nb_classes: number of output classes
    :return:
    """
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)

    # sess, preds, x, y, model, feed_dict = model_load(datasets, model_name, epoch=epoch)
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch,
                                                     mu=mu,
                                                     mu_var=mu_var,
                                                     de=de,
                                                     attack=attack)

    ###########################################################################
    # Craft adversarial examples using the Jacobian-based saliency map approach
    ###########################################################################
    '''
    if 'mnist' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(28,28,1)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'cifar10' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
    elif 'svhn' == datasets:
        sample = np.asarray([np.asarray(imread(sample_path)).reshape(32,32,3)]).astype('float32')
        sample = preprocess_image_1(sample)
   '''

    input_shape, nb_classes = get_shape(datasets)
    sample = sample[start:end]
    probabilities = model_prediction(sess, x, preds, sample, feed=feed_dict)
    current_class = []
    for i in range(0, probabilities.shape[0]):
        current_class.append(np.argmax(probabilities[i]))

    if not os.path.exists(store_path):
        os.makedirs(store_path)
    '''
    if target == current_class:
        return 'The target is equal to its original class'
    elif target >= nb_classes or target < 0:
        return 'The target is out of range'
    '''

    #only for correct:
    Y_test = Y_test[start:end]
    acc_pre_index = []
    for i in range(0, sample.shape[0]):
        if current_class[i] == np.argmax(Y_test[i]):
            acc_pre_index.append(i)

    print('Start generating adv. example for target class %i' % target)
    sample_acc = np.zeros(shape=(len(acc_pre_index), input_shape[1],
                                 input_shape[2], input_shape[3]),
                          dtype='float')
    current_class_acc = np.zeros(shape=(len(acc_pre_index)), dtype=int)
    for i in range(0, len(acc_pre_index)):
        sample_acc[i] = sample[acc_pre_index[i]]
        current_class_acc[i] = current_class[acc_pre_index[i]]
    #print('current_class_acc',current_class_acc)
    # Instantiate a SaliencyMapMethod attack object
    jsma = SaliencyMapMethod(model, back='tf', sess=sess)
    jsma_params = {
        'theta': 1.,
        'gamma': gamma,
        'clip_min': 0.,
        'clip_max': 1.,
        'y_target': None
    }

    # This call runs the Jacobian-based saliency map approach
    one_hot_target = np.zeros((1, nb_classes), dtype=np.float32)
    one_hot_target[0, target] = 1
    jsma_params['y_target'] = one_hot_target

    suc = 0
    nb_batches = int(math.ceil(float(sample_acc.shape[0]) / batch_size))
    for batch in range(nb_batches):
        #print(batch)
        start_batch = batch * batch_size
        end_batch = (batch + 1) * batch_size
        if end_batch > sample_acc.shape[0]:
            end_batch = sample_acc.shape[0]
        adv_inputs = sample_acc[start_batch:end_batch]
        for j in range(start_batch, end_batch):
            if current_class_acc[j] != target:
                adv_input = adv_inputs[j - start_batch].reshape(
                    1, input_shape[1], input_shape[2], input_shape[3])
                adv = jsma.generate_np(adv_input, **jsma_params)
                new_class_labels = model_argmax(sess,
                                                x,
                                                preds,
                                                adv,
                                                feed=feed_dict)
                res = int(new_class_labels == target)
                if res == 1:
                    adv = adv.reshape(adv.shape[1], adv.shape[2], adv.shape[3])
                    #adv_img_deprocessed = deprocess_image_1(adv)
                    #adv_img_deprocessed=adv_img_deprocessed.reshape(adv_img_deprocessed.shape[1],adv_img_deprocessed.shape[2])
                    suc += 1
                    path = store_path + '/' + str(
                        start + acc_pre_index[j]
                    ) + '_' + str(time.time() * 1000) + '_' + str(
                        current_class_acc[j]) + '_' + str(new_class_labels)
                    #path=store_path + '/'  + str(j)+ '_'+ str(current_class_acc[j]) +'.png'
                    #imsave(path, adv_img_deprocessed)
                    np.save(path, adv)
                    #print(adv.shape)

    # Close TF session
    sess.close()
    return suc, len(acc_pre_index)
示例#20
0
def neuron_coverage(datasets,
                    model_name,
                    samples_path,
                    others='',
                    train_num=0,
                    test_num=0,
                    de=False,
                    attack='fgsm',
                    just_adv=False,
                    epoch=49,
                    datasettype='test'):
    """
    :param datasets
    :param model
    :param samples_path
    :return:
    """
    # Object used to keep track of (and return) key accuracies
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    if datasettype == 'train':
        samples = X_train[:train_num]
    else:
        samples = X_test[:test_num]

    if samples_path not in ['test']:
        if not just_adv:
            [image_list, image_files, real_labels,
             predicted_labels] = get_data_file(samples_path)
            #samples_adv = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list])

            samples_adv = np.asarray(image_list)

            samples = np.concatenate((samples, samples_adv))
            print("Combine data")
        else:
            [image_list, image_files, real_labels,
             predicted_labels] = get_data_file(samples_path)
            #samples_adv = np.asarray([preprocess_image_1(image.astype('float64')) for image in image_list])

            samples = np.asarray(image_list)

            #samples = np.concatenate((samples, samples_adv))
            print("Just adv")

    tf.reset_default_graph()
    sess, preds, x, y, model, feed_dict = model_load(datasets=datasets,
                                                     model_name=model_name,
                                                     de=de,
                                                     attack=attack,
                                                     epoch=epoch,
                                                     others=others)
    model_layer_dict = init_coverage_tables(model)
    sess.close()
    del sess, preds, x, y, model, feed_dict
    gc.collect()
    #ceil取整数
    n_batches = int(np.ceil(samples.shape[0] / 256))

    for i in range(n_batches):
        print(i)
        start = i * 256
        end = np.minimum(len(samples), (i + 1) * 256)
        tf.reset_default_graph()
        sess, preds, x, y, model, feed_dict = model_load(datasets=datasets,
                                                         model_name=model_name,
                                                         de=de,
                                                         attack=attack,
                                                         epoch=epoch,
                                                         others=others)
        model_layer_dict = update_coverage(sess,
                                           x,
                                           samples[start:end],
                                           model,
                                           model_layer_dict,
                                           feed_dict,
                                           threshold=0)
        sess.close()
        del sess, preds, x, y, model, feed_dict
        gc.collect()

        result = neuron_covered(model_layer_dict)[2]
        print('covered neurons percentage %d neurons %.4f' %
              (len(model_layer_dict), result))
        if result >= 0.999:
            break
    return len(model_layer_dict), result
示例#21
0
def sc(datasets, model_name, samples_path, layer=-3, num_section=1000, de='False', attack='fgsm', epoch=9):
    X_train, Y_train, X_test, Y_test = get_data(datasets)

    if de == True:
        adv_train_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/train_data'
        [image_list_train, _, real_labels, _] = get_data_file(adv_train_path)
        samples_train = np.asarray(image_list_train)
        if datasets == "mnist":
            indexs = random.sample(range(len(samples_train)), int(len(samples_train)/12))
        elif datasets == "cifar10":
            indexs = random.sample(range(len(samples_train)), int(len(samples_train) / 10))
        train_samples = np.concatenate((samples_train[indexs], X_train[:5000]))
        store_path = "../suprise/" + datasets + "/" + model_name + "/" + attack + '/'
    else:
        train_samples = X_train[:5000]
        store_path = "../suprise/" + datasets + "/" + model_name + "/ori/"
    
    if not os.path.exists(store_path):
        os.makedirs(store_path)
        a_n_train = []
        train_labels = []
        n_batches = int(np.ceil(1.0 * train_samples.shape[0] / 512))
        for num in range(n_batches):
            print(num)
            start = num * 512
            end = np.minimum(len(train_samples), (num + 1) * 512)
            tf.reset_default_graph()
            sess, preds, x, y, model, feed_dict = model_load(datasets=datasets, model_name=model_name, de=de,
                                                             attack=attack,
                                                             epoch=epoch)
            train_labels = train_labels+model_argmax(sess, x, preds, train_samples[start:end], feed_dict).tolist()
            a_n_train = a_n_train+at_training(sess, x, train_samples[start:end], model, feed_dict, layer).tolist()
            sess.close()
            del sess, preds, x, y, model, feed_dict
            gc.collect()

        a_n_train = np.asarray(a_n_train)
        train_labels = np.asarray(train_labels)
        np.save(store_path + "a_n_train.npy", a_n_train)
        np.save(store_path + "train_labels.npy", train_labels)
    else:
        a_n_train = np.load(store_path + "a_n_train.npy")
        train_labels = np.load(store_path + "train_labels.npy")

    class_inds = {}
    for i in range(10):
        class_inds[i] = np.where(train_labels == i)[0]

    kdes_store_path=store_path+'kdes.npy'
    if os.path.exists(kdes_store_path):
        kdes = np.load(kdes_store_path).item()
    else:
        kdes = {}
        for i in range(10):
            scott_bw = pow(len(a_n_train[class_inds[i]]), -1.0/(len(a_n_train[0])+4))
            kdes[i] = KernelDensity(kernel='gaussian',
                                    bandwidth=scott_bw).fit(a_n_train[class_inds[i]])
        np.save(kdes_store_path, kdes)

    lsa = []
    dsa = []
    c = set(range(len(train_labels)))

    lsa_test_store_path=store_path+"lsa_test.npy"
    dsa_test_store_path=store_path+"dsa_test.npy"


    if os.path.exists(lsa_test_store_path) and os.path.exists(dsa_test_store_path):
        lsa=np.load(lsa_test_store_path).tolist()
        dsa=np.load(dsa_test_store_path).tolist()
    else:
        # X_test=X_test
        n_batches = int(np.ceil(1.0 * X_test.shape[0] / 512))
        for num in range(n_batches):
            print(num)
            start = num * 512
            end = np.minimum(len(X_test), (num + 1) * 512)
            batch_samples = X_test[start:end]

            tf.reset_default_graph()
            sess, preds, x, y, model, feed_dict = model_load(datasets=datasets, model_name=model_name, de=de,
                                                             attack=attack,
                                                             epoch=epoch)
            batch_labels = model_argmax(sess, x, preds, batch_samples, feed=feed_dict)
            a_n_test = at_training(sess, x, batch_samples, model, feed_dict, layer)
            sess.close()
            del sess, preds, x, y, model, feed_dict
            gc.collect()

            for i in range(len(batch_samples)):
                kd_value = kdes[batch_labels[i]].score_samples(np.reshape(a_n_test[i],(1,-1)))[0] #/ len(a_n_train[class_inds[batch_labels[i]]])
                lsa.append(-kd_value)
                data = np.asarray([a_n_test[i]], dtype=np.float32)
                batch = np.asarray(a_n_train[class_inds[batch_labels[i]]], dtype=np.float32)

                # dist = np.linalg.norm(data - batch, axis=1)
                dist = cdist(data, batch)[0]
                dist_a = min(dist)
                alpha_a = np.asarray([batch[np.argmin(dist)]])

                c_i = set(class_inds[batch_labels[i]])
                c_ni = list(c^c_i)
                batch = np.asarray(a_n_train[c_ni], dtype=np.float32)
                # dist_b = min(np.linalg.norm(alpha_a - batch, axis=1))
                dist_b = min(cdist(alpha_a, batch)[0])
                dsa.append(dist_a / dist_b)
        np.save(store_path + "lsa_test.npy", np.asarray(lsa))
        np.save(store_path + "dsa_test.npy", np.asarray(dsa))
    
    upper_lsa_test=max(lsa)
    lower_lsa_test = min(lsa)
    upper_dsa_test=max(dsa)
    lower_dsa_test = min(dsa)

    if samples_path not in ['test']:
        lsa = []
        dsa = []
        [image_list, _, _, _] = get_data_file(samples_path)  # image_files, real_labels, predicted_labels
        samples_adv = np.asarray(image_list)
        n_batches = int(np.ceil(1.0 * samples_adv.shape[0] / 512))
        for num in range(n_batches):
            print(num)
            start = num * 512
            end = np.minimum(len(samples_adv), (num + 1) * 512)
            batch_samples = samples_adv[start:end]

            tf.reset_default_graph()
            sess, preds, x, y, model, feed_dict = model_load(datasets=datasets, model_name=model_name, de=de,
                                                             attack=attack,
                                                             epoch=epoch)
            batch_labels = model_argmax(sess, x, preds, batch_samples, feed=feed_dict)
            a_n_adv = at_training(sess, x, batch_samples, model, feed_dict, layer)

            sess.close()
            del sess, preds, x, y, model, feed_dict
            gc.collect()

            for i in range(len(batch_samples)):
                kd_value = kdes[batch_labels[i]].score_samples(np.reshape(a_n_adv[i],(1,-1)))[0] #/ len(a_n_train[class_inds[batch_labels[i]]])
                lsa.append(-kd_value)
                data = np.asarray([a_n_adv[i]], dtype=np.float32)
                batch = np.asarray(a_n_train[class_inds[batch_labels[i]]], dtype=np.float32)

                # dist = np.linalg.norm(data - batch, axis=1)
                dist = cdist(data, batch)[0]
                dist_a = min(dist)
                alpha_a = np.asarray([batch[np.argmin(dist)]])

                c_i = set(class_inds[batch_labels[i]])
                c_ni = list(c ^ c_i)
                batch = np.asarray(a_n_train[c_ni], dtype=np.float32)
                # dist_b = min(np.linalg.norm(alpha_a - batch, axis=1))
                dist_b = min(cdist(alpha_a, batch)[0])
                dsa.append(dist_a / dist_b)

    for i in range(len(lsa)):
        lsa[i]=(lsa[i]-lower_lsa_test)/(upper_lsa_test-lower_lsa_test)
        dsa[i]=(dsa[i]-lower_dsa_test)/(upper_dsa_test-lower_dsa_test)

    lsa_mean = np.mean(lsa)
    lsa_std = np.std(lsa)
    dsa_mean = np.mean(dsa)
    dsa_std = np.std(dsa)

    half_section = int(num_section / 2)
    n_section_lsa=np.zeros(num_section).astype('int64')
    n_section_dsa=np.zeros(num_section).astype('int64')
    for i in range(len(lsa)):
        l = lsa[i]*half_section
        d = dsa[i]*half_section
        if math.ceil(l) < num_section and math.floor(l) >= 0:
            if math.ceil(l) == math.floor(l):
                n_section_lsa[int(l)-1]=1
            else:
                n_section_lsa[int(l)]=1
        if math.ceil(d) < num_section and math.floor(d) >= 0:
            if math.ceil(d) == math.floor(d):
                n_section_dsa[int(d)-1]=1
            else:
                n_section_dsa[int(d)]=1

    cov_lsa_1=1.0 * sum(n_section_lsa[:half_section])/(half_section)
    cov_dsa_1=1.0 * sum(n_section_dsa[:half_section])/(half_section)

    cov_lsa_2 = 1.0 * sum(n_section_lsa[half_section:]) / (half_section)
    cov_dsa_2 = 1.0 * sum(n_section_dsa[half_section:]) / (half_section)

    print([lsa_mean, lsa_std, cov_lsa_1, cov_lsa_2, upper_lsa_test,lower_lsa_test, dsa_mean, dsa_std, cov_dsa_1, cov_dsa_2, upper_dsa_test,lower_dsa_test])
    return [lsa_mean, lsa_std, cov_lsa_1, cov_lsa_2, upper_lsa_test,lower_lsa_test, dsa_mean, dsa_std, cov_dsa_1, cov_dsa_2, upper_dsa_test,lower_dsa_test]
示例#22
0
文件: nai.py 项目: asplos2020/DRTest
def nai(datasets,
        model_name,
        ration=0.1,
        threshold=0.9,
        batch_size=256,
        epoch=9):
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)

    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch)

    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess,
                          x,
                          y,
                          preds,
                          X_test,
                          Y_test,
                          args=eval_params,
                          feed=feed_dict)
    print('Test accuracy on legitimate test examples for original model: {0}'.
          format(accuracy))

    unique_neurons = 0
    for layer in model.layers:
        if "Conv2D" in layer.__class__.__name__:
            unique_neurons += layer.output_channels
        elif "Linear" in layer.__class__.__name__:
            unique_neurons += layer.num_hid
        #as for BN, it changes when Conv2D changes, so would make sure to invert the activation
    indices = np.random.choice(unique_neurons,
                               int(unique_neurons * ration),
                               replace=False)

    neurons_count = 0
    for i in range(len(model.layers)):
        layer = model.layers[i]
        if "Conv2D" in layer.__class__.__name__:
            unique_neurons_layer = layer.output_channels
            mutated_neurons = set(indices) & set(
                np.arange(neurons_count, neurons_count + unique_neurons_layer))
            if mutated_neurons:
                mutated_neurons = np.array(
                    list(mutated_neurons)) - neurons_count
                kernel_shape = layer.kernel_shape
                mutated_metrix = np.asarray([1.0] * unique_neurons_layer)
                mutated_metrix[mutated_neurons] = -1.0
                mutated_kernel = np.asarray(
                    [[[list(mutated_metrix)]] * kernel_shape[1]] *
                    kernel_shape[0])
                update_kernel = tf.assign(
                    layer.kernels, mutated_kernel * sess.run(layer.kernels))
                update_bias = tf.assign(layer.b,
                                        mutated_metrix * sess.run(layer.b))
                sess.run(update_kernel)
                sess.run(update_bias)
                if "BN" in model.layers[i + 1].__class__.__name__:
                    layer = model.layers[i + 1]
                    update_beta = tf.assign(
                        layer.beta, mutated_metrix * sess.run(layer.beta))
                    update_moving_mean = tf.assign(
                        layer.moving_mean,
                        mutated_metrix * sess.run(layer.moving_mean))
                    sess.run(update_beta)
                    sess.run(update_moving_mean)
            neurons_count += unique_neurons_layer
        elif "Linear" in layer.__class__.__name__:
            unique_neurons_layer = layer.num_hid
            mutated_neurons = set(indices) & set(
                np.arange(neurons_count, neurons_count + unique_neurons_layer))
            if mutated_neurons:
                mutated_neurons = np.array(
                    list(mutated_neurons)) - neurons_count
                input_shape = layer.input_shape[1]
                mutated_metrix = np.asarray([1.0] * unique_neurons_layer)
                mutated_metrix[mutated_neurons] = -1.0
                mutated_weight = np.asarray([list(mutated_metrix)] *
                                            input_shape)
                weight = sess.run(layer.W)
                update_weight = tf.assign(layer.W, mutated_weight * weight)
                update_bias = tf.assign(layer.b,
                                        mutated_metrix * sess.run(layer.b))
                sess.run(update_weight)
                sess.run(update_bias)
            neurons_count += unique_neurons_layer

    mutated_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds,
                                  X_test,
                                  Y_test,
                                  args=eval_params,
                                  feed=feed_dict)
    print('Test accuracy on legitimate test examples for mutated model: {0}'.
          format(mutated_accuracy))

    if mutated_accuracy >= threshold * accuracy:
        train_dir = os.path.join(path.mu_model_path, 'nai',
                                 datasets + '_' + model_name, '0')
        if not os.path.exists(train_dir):
            os.makedirs(train_dir)
        save_path = os.path.join(train_dir,
                                 datasets + '_' + model_name + '.model')
        saver = tf.train.Saver()
        saver.save(sess, save_path)

    sess.close()
示例#23
0
def prepare_datasets(datasets, model_path, attack_type, sample_path):
    print('Loading the data and model...')
    # Load the model
    sess, preds, x, y, model, feed_dict = model_load(datasets, model_path)
    # Load the dataset
    if 'mnist' == datasets:
        train_start = 0
        train_end = 60000
        test_start = 0
        test_end = 10000

        # Get MNIST test data
        X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
                                                      train_end=train_end,
                                                      test_start=test_start,
                                                      test_end=test_end)
    elif 'cifar10' == datasets:
        preprocess_image = preprocess_image_1
        train_start = 0
        train_end = 50000
        test_start = 0
        test_end = 10000

        # Get CIFAR10 test data
        X_train, Y_train, fn_train, X_test, Y_test, fn_test = data_cifar10(
            train_start=train_start,
            train_end=train_end,
            test_start=test_start,
            test_end=test_end,
            preprocess=preprocess_image)

    if attack_type == "normal":
        # Refine the normal, noisy and adversarial sets to only include samples for
        # which the original version was correctly classified by the model
        preds_test = np.asarray([])
        for i in range(40):
            preds_test = np.concatenate(
                (preds_test,
                 model_argmax(sess,
                              x,
                              preds,
                              X_test[i * 250:(i + 1) * 250],
                              feed=feed_dict)))
        inds_correct = np.asarray(
            np.where(preds_test == Y_test.argmax(axis=1))[0])
        inds_correct = inds_correct[np.random.choice(len(inds_correct),
                                                     5000,
                                                     replace=False)]
        X_test = X_test[inds_correct]
        for i in range(4000):
            imsave(
                "../datasets/experiment/" + datasets + "/normal/train/" +
                str(inds_correct[i]) + '_' +
                str(int(preds_test[inds_correct[i]])) + '_' +
                str(int(preds_test[inds_correct[i]])) + '_.png',
                deprocess_image_1(X_test[i:i + 1]))
        for j in range(1000):
            imsave(
                "../datasets/experiment/" + datasets + "/normal/test/" +
                str(inds_correct[4000 + j]) + '_' +
                str(int(preds_test[inds_correct[4000 + j]])) + '_' +
                str(int(preds_test[inds_correct[4000 + j]])) + '_.png',
                deprocess_image_1(X_test[4000 + j:4001 + j]))
    elif attack_type == "error":
        preds_test = np.asarray([])
        for i in range(40):
            preds_test = np.concatenate(
                (preds_test,
                 model_argmax(sess,
                              x,
                              preds,
                              X_test[i * 250:(i + 1) * 250],
                              feed=feed_dict)))
        inds_correct = np.asarray(
            np.where(preds_test != Y_test.argmax(axis=1))[0])
        X_test = X_test[inds_correct]
        num = int(len(X_test) * 0.8)
        for i in range(num):
            imsave(
                "../datasets/experiment/" + datasets + "/error/train/" +
                str(inds_correct[i]) + '_' +
                str(int(np.argmax(Y_test[inds_correct[i]]))) + '_' +
                str(int(preds_test[inds_correct[i]])) + '_.png',
                deprocess_image_1(X_test[i:i + 1]))
        for j in range(len(X_test) - num):
            imsave(
                "../datasets/experiment/" + datasets + "/error/test/" +
                str(inds_correct[num + j]) + '_' +
                str(int(np.argmax(Y_test[inds_correct[num + j]]))) + '_' +
                str(int(preds_test[inds_correct[num + j]])) + '_.png',
                deprocess_image_1(X_test[num + j:num + 1 + j]))
    else:
        # Check attack type, select adversarial and noisy samples accordingly
        print('Loading adversarial samples...')
        # Load adversarial samplesx
        [X_test_adv, adv_image_files, real_labels, predicted_labels
         ] = utils.get_data_mutation_test(sample_path + attack_type + '/' +
                                          datasets)
        if len(X_test_adv) > 5000:
            index = np.asarray(range(len(X_test_adv)))
            index = index[np.random.choice(len(index), 5000, replace=False)]
            for i in range(4000):
                imsave(
                    "../datasets/experiment/" + datasets + "/" + attack_type +
                    "/train/" + adv_image_files[index[i]],
                    X_test_adv[index[i]])
            for j in range(1000):
                imsave(
                    "../datasets/experiment/" + datasets + "/" + attack_type +
                    "/test/" + adv_image_files[index[4000 + j]],
                    X_test_adv[index[4000 + j]])
        else:
            index = np.asarray(range(len(X_test_adv)))
            np.random.shuffle(index)
            cut = int(len(X_test_adv) * 0.8)
            for i in range(len(index)):
                if i < cut:
                    imsave(
                        "../datasets/experiment/" + datasets + "/" +
                        attack_type + "/train/" + adv_image_files[index[i]],
                        X_test_adv[index[i]])
                else:
                    imsave(
                        "../datasets/experiment/" + datasets + "/" +
                        attack_type + "/test/" + adv_image_files[index[i]],
                        X_test_adv[index[i]])
示例#24
0
def choose_mu(attack='fgsm',
              datasets='mnist',
              total_num=10000,
              model_name='lenet1',
              mu_var='gf'):
    tf.reset_default_graph()
    tf.set_random_seed(1234)
    config = tf.ConfigProto()
    #config.gpu_options.per_process_gpu_memory_fraction = 0.7
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     de=False,
                                                     epoch=9,
                                                     attack='fgsm',
                                                     mu=True,
                                                     mu_var=mu_var)
    pre = model_prediction(sess,
                           x,
                           preds,
                           X_test,
                           feed=feed_dict,
                           datasets=datasets)
    acc_pre_index = []
    for i in range(0, pre.shape[0]):
        if np.argmax(pre[i]) == np.argmax(Y_test[i]):
            acc_pre_index.append(i)
    input_shape, nb_classes = get_shape(datasets)

    train_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name
    store_path_train = '../adv_result/mu_' + datasets + '/' + mu_var + '/' + attack + '/' + model_name + '/train_data'
    store_path_test = '../adv_result/mu_' + datasets + '/' + mu_var + '/' + attack + '/' + model_name + '/test_data'
    if not os.path.isdir(store_path_train):
        os.makedirs(store_path_train)
    if not os.path.isdir(store_path_test):
        os.makedirs(store_path_test)

    if datasets == 'cifar10':
        if attack == 'fgsm':
            step_size = [0.01, 0.02, 0.03]

            for s in range(0, len(step_size)):

                samples_path = train_path + '/' + str(step_size[s])
                [image_list, image_files, real_labels,
                 predicted_labels] = get_data_file(samples_path)
                samples_adv = np.asarray(image_list)
                result = model_prediction(sess,
                                          x,
                                          preds,
                                          samples_adv,
                                          feed=feed_dict,
                                          datasets=datasets)
                ind_file = []
                for i in range(len(image_list)):
                    ind_file.append(image_files[i].split('_')[0])
                ind = []
                for i in range(len(image_list)):
                    nn = int(image_files[i].split('_')[0])
                    if (nn in acc_pre_index) and (predicted_labels[i]
                                                  == np.argmax(result[i])):
                        ind.append(image_files[i].split('_')[0])

                for i in range(0, int(math.ceil(X_test.shape[0] / 6))):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        test_p = store_path_test + '/' + image_files[i_index]
                        np.save(test_p, image_list[i_index])
                for i in range(int(math.ceil(X_test.shape[0] / 6)),
                               X_test.shape[0]):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        train_p = store_path_train + '/' + image_files[i_index]
                        np.save(train_p, image_list[i_index])

        if attack == 'cw':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            cw_ini_cons = [0.1, 0.2, 0.3]
            for t in range(0, len(targets)):
                for c in range(0, len(cw_ini_cons)):

                    samples_path = train_path + '/' + str(
                        cw_ini_cons[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 6))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 6), 1000 *
                                                  (t + 1))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])

        if attack == 'jsma':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            jsma_var = [0.09, 0.1, 0.11]
            for t in range(0, len(targets)):
                for c in range(0, len(jsma_var)):

                    samples_path = train_path + '/' + str(
                        jsma_var[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 6))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 6)),
                                   1000 * (t + 1)):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])

    if datasets == 'mnist':
        if attack == 'fgsm':
            step_size = [0.2, 0.3, 0.4]

            for s in range(0, len(step_size)):

                samples_path = train_path + '/' + str(step_size[s])
                [image_list, image_files, real_labels,
                 predicted_labels] = get_data_file(samples_path)
                samples_adv = np.asarray(image_list)
                result = model_prediction(sess,
                                          x,
                                          preds,
                                          samples_adv,
                                          feed=feed_dict,
                                          datasets=datasets)
                ind_file = []
                for i in range(len(image_list)):
                    ind_file.append(image_files[i].split('_')[0])
                ind = []
                for i in range(len(image_list)):
                    nn = int(image_files[i].split('_')[0])
                    if (nn in acc_pre_index) and (predicted_labels[i]
                                                  == np.argmax(result[i])):
                        ind.append(image_files[i].split('_')[0])

                for i in range(0, int(math.ceil(X_test.shape[0] / 7))):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        test_p = store_path_test + '/' + image_files[i_index]
                        np.save(test_p, image_list[i_index])
                for i in range(int(math.ceil(X_test.shape[0] / 7)),
                               X_test.shape[0]):
                    if str(i) in ind:
                        i_index = ind_file.index(str(i))
                        image_files[i_index] = str(
                            step_size[s]) + '_' + image_files[i_index]

                        train_p = store_path_train + '/' + image_files[i_index]
                        np.save(train_p, image_list[i_index])

        if attack == 'cw':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            cw_ini_cons = [9, 10, 11]
            for t in range(0, len(targets)):
                for c in range(0, len(cw_ini_cons)):

                    samples_path = train_path + '/' + str(
                        cw_ini_cons[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 7))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 7)),
                                   1000 * (t + 1)):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                cw_ini_cons[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])

        if attack == 'jsma':
            targets = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
            jsma_var = [0.09, 0.1, 0.11]
            for t in range(0, len(targets)):
                for c in range(0, len(jsma_var)):

                    samples_path = train_path + '/' + str(
                        jsma_var[c]) + '_' + str(targets[t])
                    [image_list, image_files, real_labels,
                     predicted_labels] = get_data_file(samples_path)
                    samples_adv = np.asarray(image_list)
                    result = model_prediction(sess,
                                              x,
                                              preds,
                                              samples_adv,
                                              feed=feed_dict,
                                              datasets=datasets)
                    ind_file = []
                    for i in range(len(image_list)):
                        ind_file.append(image_files[i].split('_')[0])
                    ind = []
                    for i in range(len(image_list)):
                        nn = int(image_files[i].split('_')[0])
                        if (nn in acc_pre_index) and (predicted_labels[i]
                                                      == np.argmax(result[i])):
                            ind.append(image_files[i].split('_')[0])

                    for i in range(1000 * t,
                                   1000 * t + int(math.ceil(1000 / 7))):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            test_p = store_path_test + '/' + image_files[
                                i_index]
                            np.save(test_p, image_list[i_index])

                    for i in range(1000 * t + int(math.ceil(1000 / 7)),
                                   1000 * (t + 1)):
                        if str(i) in ind:
                            i_index = ind_file.index(str(i))
                            image_files[i_index] = str(
                                jsma_var[c]) + '_' + image_files[i_index]

                            train_p = store_path_train + '/' + image_files[
                                i_index]
                            np.save(train_p, image_list[i_index])
示例#25
0
def detect_adv_samples(datasets, model_path, sample_path, store_path,
                       attack_type):
    print('Loading the data and model...')
    # Load the model
    sess, preds, x, y, model, feed_dict = model_load(datasets, model_path)

    # # Load the dataset
    if 'mnist' == datasets:
        train_start = 0
        train_end = 60000
        test_start = 0
        test_end = 10000

        # Get MNIST test data
        X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
                                                      train_end=train_end,
                                                      test_start=test_start,
                                                      test_end=test_end)
    elif 'cifar10' == datasets:
        preprocess_image = preprocess_image_1
        train_start = 0
        train_end = 50000
        test_start = 0
        test_end = 10000

        # Get CIFAR10 test data
        X_train, Y_train, fn_train, X_test, Y_test, fn_test = data_cifar10(
            train_start=train_start,
            train_end=train_end,
            test_start=test_start,
            test_end=test_end,
            preprocess=preprocess_image)

    # # Refine the normal, noisy and adversarial sets to only include samples for
    # # which the original version was correctly classified by the model
    # preds_test = model_argmax(sess, x, preds, X_test, feed=feed_dict)
    # inds_correct = np.where(preds_test == Y_test.argmax(axis=1))[0]
    # X_test = X_test[inds_correct]
    # X_test = X_test[np.random.choice(len(X_test), 500)]#500
    #
    # # Check attack type, select adversarial and noisy samples accordingly
    # print('Loading adversarial samples...')
    # # Load adversarial samplesx
    # [X_test_adv, adv_image_files, real_labels, predicted_labels] = utils.get_data_mutation_test(sample_path)
    # X_test_adv = preprocess_image_1(np.asarray(X_test_adv).astype('float32'))
    # if len(X_test_adv.shape) < 4:
    #     X_test_adv = np.expand_dims(X_test_adv, axis=3)

    [X_test_adv_train, adv_image_files, real_labels, predicted_labels
     ] = utils.get_data_mutation_test("../datasets/experiment/" + datasets +
                                      "/" + attack_type + "/train")
    [X_test_adv_test, adv_image_files, real_labels, predicted_labels
     ] = utils.get_data_mutation_test("../datasets/experiment/" + datasets +
                                      "/" + attack_type + "/test")
    train_num = len(X_test_adv_train)
    test_num = len(X_test_adv_test)
    X_test_adv = preprocess_image_1(
        np.concatenate((np.asarray(X_test_adv_train),
                        np.asarray(X_test_adv_test))).astype('float32'))
    if len(X_test_adv.shape) < 4:
        X_test_adv = np.expand_dims(X_test_adv, axis=3)

    [X_test_train, adv_image_files, real_labels,
     predicted_labels] = utils.get_data_normal_test("../datasets/experiment/" +
                                                    datasets + "/normal/train")
    [X_test_test, adv_image_files, real_labels,
     predicted_labels] = utils.get_data_normal_test("../datasets/experiment/" +
                                                    datasets + "/normal/test")
    X_test_train = np.asarray(X_test_train)[np.random.choice(len(X_test_train),
                                                             train_num,
                                                             replace=False)]
    X_test_test = np.asarray(X_test_test)[np.random.choice(len(X_test_test),
                                                           test_num,
                                                           replace=False)]
    X_test = preprocess_image_1(
        np.concatenate((np.asarray(X_test_train),
                        np.asarray(X_test_test))).astype('float32'))
    if len(X_test.shape) < 4:
        X_test = np.expand_dims(X_test, axis=3)

    ## Get Bayesian uncertainty scores
    print('Getting Monte Carlo dropout variance predictions...')
    uncerts_normal = get_mc_predictions(sess, x, preds,
                                        X_test).var(axis=0).mean(axis=1)
    uncerts_adv = get_mc_predictions(sess, x, preds,
                                     X_test_adv).var(axis=0).mean(axis=1)

    ## Get KDE scores
    # Get deep feature representations
    print('Getting deep feature representations...')
    X_train_features = get_deep_representations(sess, x, X_train, model,
                                                feed_dict)
    X_test_normal_features = get_deep_representations(sess, x, X_test, model,
                                                      feed_dict)
    X_test_adv_features = get_deep_representations(sess, x, X_test_adv, model,
                                                   feed_dict)

    # Train one KDE per class
    print('Training KDEs...')
    class_inds = {}
    for i in range(Y_train.shape[1]):
        class_inds[i] = np.where(Y_train.argmax(axis=1) == i)[0]
    kdes = {}
    warnings.warn(
        "Using pre-set kernel bandwidths that were determined "
        "optimal for the specific CNN models of the paper. If you've "
        "changed your model, you'll need to re-optimize the "
        "bandwidth.")
    for i in range(Y_train.shape[1]):
        kdes[i] = KernelDensity(kernel='gaussian',
                                bandwidth=BANDWIDTHS[datasets]) \
            .fit(X_train_features[class_inds[i]])

    # Get model predictions
    print('Computing model predictions...')
    preds_test_normal = model_argmax(sess, x, preds, X_test, feed=feed_dict)
    preds_test_adv = model_argmax(sess, x, preds, X_test_adv, feed=feed_dict)

    # Get density estimates
    print('computing densities...')
    densities_normal = score_samples(kdes, X_test_normal_features,
                                     preds_test_normal)
    densities_adv = score_samples(kdes, X_test_adv_features, preds_test_adv)

    uncerts_pos = uncerts_adv[:]
    uncerts_neg = uncerts_normal[:]
    characteristics, labels = merge_and_generate_labels(
        uncerts_pos, uncerts_neg)
    file_name = os.path.join('../detection/bu/',
                             "%s_%s.npy" % (datasets, attack_type))
    data = np.concatenate((characteristics, labels), axis=1)
    np.save(file_name, data)

    densities_pos = densities_adv[:]
    densities_neg = densities_normal[:]
    characteristics, labels = merge_and_generate_labels(
        densities_pos, densities_neg)
    file_name = os.path.join(
        '../detection/de/',
        "%s_%s_%.4f.npy" % (datasets, attack_type, BANDWIDTHS[datasets]))
    data = np.concatenate((characteristics, labels), axis=1)
    np.save(file_name, data)

    ## Z-score the uncertainty and density values
    uncerts_normal_z, uncerts_adv_z = normalize(uncerts_normal, uncerts_adv)
    densities_normal_z, densities_adv_z = normalize(densities_normal,
                                                    densities_adv)

    ## Build detector
    values, labels = features(densities_pos=densities_adv_z,
                              densities_neg=densities_normal_z,
                              uncerts_pos=uncerts_adv_z,
                              uncerts_neg=uncerts_normal_z)
    X_tr, Y_tr, X_te, Y_te = block_split(values, labels, train_num)

    lr = train_lr(X_tr, Y_tr)

    ## Evaluate detector
    # Compute logistic regression model predictions
    probs = lr.predict_proba(X_te)[:, 1]
    preds = lr.predict(X_te)
    # Compute AUC
    n_samples = int(len(X_te) / 2)
    # The first 2/3 of 'probs' is the negative class (normal and noisy samples),
    # and the last 1/3 is the positive class (adversarial samples).
    _, _, auc_score = compute_roc(probs_neg=probs[:n_samples],
                                  probs_pos=probs[n_samples:])

    precision = precision_score(Y_te, preds)
    recall = recall_score(Y_te, preds)

    y_label_pred = lr.predict(X_te)
    acc = accuracy_score(Y_te, y_label_pred)

    print(
        'Detector ROC-AUC score: %0.4f, accuracy: %.4f, precision: %.4f, recall: %.4f'
        % (auc_score, acc, precision, recall))
示例#26
0
def batch_attack(datasets, attack, model_path, store_path, nb_classes):
    if 'mnist' == datasets:
        train_start = 0
        train_end = 60000
        test_start = 0
        test_end = 10000

        # Get MNIST test data
        X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
                                                      train_end=train_end,
                                                      test_start=test_start,
                                                      test_end=test_end)
    elif 'cifar10' == datasets:
        preprocess_image = preprocess_image_1
        train_start = 0
        train_end = 50000
        test_start = 0
        test_end = 10000

        # Get CIFAR10 test data
        X_train, Y_train, fn_train, X_test, Y_test, fn_test = data_cifar10(
            train_start=train_start,
            train_end=train_end,
            test_start=test_start,
            test_end=test_end,
            preprocess=preprocess_image)
    elif 'svhn' == datasets:
        # choose the method of preprocess image
        preprocess_image = preprocess_image_1

        train_start = 0
        train_end = 73257
        test_start = 0
        test_end = 26032

        # Get SVHN test data
        X_train, Y_train, X_test, Y_test = data_svhn(
            train_start=train_start,
            train_end=train_end,
            test_start=test_start,
            test_end=test_end,
            preprocess=preprocess_image)

    store_path = store_path + attack + '/' + datasets
    sample_path = '../datasets/integration/batch_attack/' + datasets + '/'
    sess, preds, x, y, model, feed_dict = model_load(datasets, model_path)
    if os.listdir(sample_path) == []:
        for i in range(len(X_test)):
            sample = X_test[i:i + 1]
            path = sample_path + str(i) + '.png'
            imsave(path, deprocess_image_1(sample))
            current_img = ndimage.imread(path)
            img = np.expand_dims(
                preprocess_image_1(current_img.astype('float64')), 0)
            p = model_argmax(sess, x, preds, img, feed=feed_dict)
            if p != Y_test[i].argmax(axis=0):
                os.remove(path)
        # for i in range(len(X_test)):
        #     sample = X_test[i:i+1]
        #     if model_argmax(sess, x, preds, sample, feed=feed_dict) == Y_test[i].argmax(axis=0):
        #         path = sample_path + str(i) + '.png'
        #         imsave(path, deprocess_image_1(sample))

    sess.close()
    samples = os.listdir(sample_path)
    for sample in samples:
        tf.reset_default_graph()
        if 'blackbox' == attack:
            blackbox(datasets=datasets,
                     sample_path=sample_path + sample,
                     model_path=model_path,
                     store_path=store_path,
                     nb_classes=nb_classes)
        elif 'fgsm' == attack:
            fgsm(datasets=datasets,
                 sample_path=sample_path + sample,
                 model_path=model_path,
                 store_path=store_path,
                 nb_classes=nb_classes)
        else:
            i = int(sample.split('.')[-2])
            for j in range(nb_classes):
                tf.reset_default_graph()
                if Y_test[i][j] == 0:
                    if 'jsma' == attack:
                        jsma(datasets=datasets,
                             sample_path=sample_path + sample,
                             target=j,
                             model_path=model_path,
                             store_path=store_path,
                             nb_classes=nb_classes)
                    if 'cw' == attack:
                        cw(datasets=datasets,
                           sample_path=sample_path + sample,
                           target=j,
                           model_path=model_path,
                           store_path=store_path,
                           nb_classes=nb_classes)
示例#27
0
def ric(datasets, model, samples_path, quality, epoch=49):
    """
    :param datasets
    :param model
    :param samples_path
    :return:
    """
    # Object used to keep track of (and return) key accuracies
    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model,
                                                     epoch=epoch)

    [image_list, image_files, real_labels,
     predicted_labels] = get_data_file(samples_path)

    ori_path = samples_path.replace('test_data', 'ric_ori')
    if not os.path.exists(ori_path):
        os.makedirs(ori_path)
    ic_path = samples_path.replace('test_data', 'ric_ic')
    if not os.path.exists(ic_path):
        os.makedirs(ic_path)

    count = 0
    for i in range(len(image_list)):
        #jj=np.asarray(image_list[i:i+1])
        #print(jj.shape)
        if datasets == 'mnist':
            adv_img_deprocessed = deprocess_image_1(
                np.asarray(image_list[i:i + 1]))[0]
        elif datasets == 'cifar10':
            adv_img_deprocessed = deprocess_image_1(
                np.asarray(image_list[i:i + 1]))

        saved_adv_image_path = os.path.join(
            ori_path, image_files[i].replace("npy", "png"))
        imsave(saved_adv_image_path, adv_img_deprocessed)

        output_IC_path = os.path.join(ic_path,
                                      image_files[i].replace("npy", "jpg"))

        cmd = '../../guetzli/bin/Release/guetzli --quality {} {} {}'.format(
            quality, saved_adv_image_path, output_IC_path)
        assert os.system(
            cmd
        ) == 0, 'guetzli tool should be install before, https://github.com/google/guetzli'

        if datasets == 'cifar10':
            IC_image = Image.open(output_IC_path).convert('RGB')
            IC_image = np.asarray(
                [np.array(IC_image).astype('float32') / 255.0])
            #IC_image=IC_image.reshape(32, 32, 3)
        elif datasets == 'mnist':
            IC_image = Image.open(output_IC_path).convert('L')
            IC_image = np.expand_dims(np.array(IC_image).astype('float32'),
                                      axis=0) / 255.0
            IC_image = IC_image.reshape(-1, 28, 28, 1)

        if model_argmax(sess, x, preds, IC_image, feed=feed_dict) != int(
                real_labels[i]):
            count = count + 1

    result = 1.0 * count / len(image_list)
    print('Robustness to image compression is %.4f' % (result))

    # Close TF session
    sess.close()

    return result
示例#28
0
文件: ws.py 项目: asplos2020/DRTest
def ws(datasets,
       model_name,
       ration=0.1,
       threshold=0.9,
       batch_size=256,
       epoch=9):
    tf.reset_default_graph()
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    input_shape, nb_classes = get_shape(datasets)

    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_name,
                                                     epoch=epoch)

    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess,
                          x,
                          y,
                          preds,
                          X_test,
                          Y_test,
                          args=eval_params,
                          feed=feed_dict)
    print('Test accuracy on legitimate test examples for original model: {0}'.
          format(accuracy))

    unique_neurons = 0
    for layer in model.layers:
        if "Conv2D" in layer.__class__.__name__:
            unique_neurons += layer.output_channels
        elif "Linear" in layer.__class__.__name__:
            unique_neurons += layer.num_hid
        # every BN neuron only connected with a previous neuron
    indices = np.random.choice(unique_neurons,
                               int(unique_neurons * ration),
                               replace=False)

    neurons_count = 0
    for i in range(len(model.layers)):
        layer = model.layers[i]
        if "Conv2D" in layer.__class__.__name__:
            unique_neurons_layer = layer.output_channels
            mutated_neurons = set(indices) & set(
                np.arange(neurons_count, neurons_count + unique_neurons_layer))
            if mutated_neurons:
                mutated_neurons = np.array(
                    list(mutated_neurons)) - neurons_count
                current_weights = sess.run(layer.kernels).transpose(
                    [3, 0, 1, 2])
                for neuron in mutated_neurons:
                    old_data = current_weights[neuron].reshape(-1)
                    shuffle_index = np.arange(len(old_data))
                    np.random.shuffle(shuffle_index)
                    new_data = old_data[shuffle_index].reshape(
                        layer.kernels.shape[0], layer.kernels.shape[1],
                        layer.kernels.shape[2])
                    current_weights[neuron] = new_data
                update_weights = tf.assign(
                    layer.kernels, current_weights.transpose([1, 2, 3, 0]))
                sess.run(update_weights)
            neurons_count += unique_neurons_layer
        elif "Linear" in layer.__class__.__name__:
            unique_neurons_layer = layer.num_hid
            mutated_neurons = set(indices) & set(
                np.arange(neurons_count, neurons_count + unique_neurons_layer))
            if mutated_neurons:
                mutated_neurons = np.array(
                    list(mutated_neurons)) - neurons_count
                current_weights = sess.run(layer.W).transpose([1, 0])
                for neuron in mutated_neurons:
                    old_data = current_weights[neuron]
                    shuffle_index = np.arange(len(old_data))
                    np.random.shuffle(shuffle_index)
                    new_data = old_data[shuffle_index]
                    current_weights[neuron] = new_data
                update_weights = tf.assign(layer.W,
                                           current_weights.transpose([1, 0]))
                sess.run(update_weights)
            neurons_count += unique_neurons_layer

    mutated_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds,
                                  X_test,
                                  Y_test,
                                  args=eval_params,
                                  feed=feed_dict)
    print('Test accuracy on legitimate test examples for mutated model: {0}'.
          format(mutated_accuracy))

    if mutated_accuracy >= threshold * accuracy:
        train_dir = os.path.join(path.mu_model_path, 'ws',
                                 datasets + '_' + model_name, '0')
        if not os.path.exists(train_dir):
            os.makedirs(train_dir)
        save_path = os.path.join(train_dir,
                                 datasets + '_' + model_name + '.model')
        saver = tf.train.Saver()
        saver.save(sess, save_path)

    sess.close()
示例#29
0
def mutation_tutorial(datasets,
                      attack,
                      sample_path,
                      store_path,
                      model_path,
                      level=1,
                      test_num=100,
                      mutation_number=1000,
                      mutated=False):
    if 'mnist' == datasets:
        train_start = 0
        train_end = 60000
        test_start = 0
        test_end = 10000

        # Get MNIST test data
        X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
                                                      train_end=train_end,
                                                      test_start=test_start,
                                                      test_end=test_end)
    elif 'cifar10' == datasets:
        preprocess_image = preprocess_image_1
        train_start = 0
        train_end = 50000
        test_start = 0
        test_end = 10000

        # Get CIFAR10 test data
        X_train, Y_train, fn_train, X_test, Y_test, fn_test = data_cifar10(
            train_start=train_start,
            train_end=train_end,
            test_start=test_start,
            test_end=test_end,
            preprocess=preprocess_image)
    elif 'svhn' == datasets:
        # choose the method of preprocess image
        preprocess_image = preprocess_image_1

        train_start = 0
        train_end = 73257
        test_start = 0
        test_end = 26032

        # Get SVHN test data
        X_train, Y_train, X_test, Y_test = data_svhn(
            train_start=train_start,
            train_end=train_end,
            test_start=test_start,
            test_end=test_end,
            preprocess=preprocess_image)

    sess, preds, x, y, model, feed_dict = model_load(datasets,
                                                     model_path + datasets)

    # Generate random matution matrix for mutations
    store_path = store_path + attack + '/' + datasets + '/' + str(level)
    if not os.path.exists(store_path):
        os.makedirs(store_path)
    result = ''

    sample_path = sample_path + attack + '/' + datasets
    [image_list, image_files, real_labels,
     predicted_labels] = utils.get_data_mutation_test(sample_path)
    index = np.random.choice(len(image_files), test_num, replace=False)
    image_list = np.asarray(image_list)[index]
    image_files = np.asarray(image_files)[index].tolist()
    predicted_labels = np.asarray(predicted_labels)[index].tolist()

    seed_number = len(image_list)
    if datasets == 'mnist':
        img_rows = 28
        img_cols = 28
        mutation_test = MutationTest(img_rows, img_cols, seed_number,
                                     mutation_number, level)
        mutation_test.mutation_generate(mutated, store_path,
                                        utils.generate_value_1)
    elif datasets == 'cifar10' or datasets == 'svhn':
        img_rows = 32
        img_cols = 32
        mutation_test = MutationTest(img_rows, img_cols, seed_number,
                                     mutation_number, level)
        mutation_test.mutation_generate(mutated, store_path,
                                        utils.generate_value_3)

    store_string, result = mutation_test.mutation_test_adv(
        preprocess_image_1, result, image_list, predicted_labels, sess, x,
        preds, image_files, feed_dict)

    with open(store_path + "/adv_result.csv", "w") as f:
        f.write(store_string)

    path = store_path + '/ori_jsma'
    if not os.path.exists(path):
        os.makedirs(path)

    preds_test = np.asarray([])
    for i in range(40):
        preds_test = np.concatenate(
            (preds_test,
             model_argmax(sess,
                          x,
                          preds,
                          X_test[i * 250:(i + 1) * 250],
                          feed=feed_dict)))
    inds_correct = np.asarray(np.where(preds_test == Y_test.argmax(axis=1))[0])
    inds_correct = inds_correct[np.random.choice(len(inds_correct),
                                                 test_num,
                                                 replace=False)]
    image_list = X_test[inds_correct]
    real_labels = Y_test[inds_correct].argmax(axis=1)

    np.save(path + '/ori_x.npy', np.asarray(image_list))
    np.save(path + '/ori_y.npy', np.asarray(real_labels))

    image_list = np.load(path + '/ori_x.npy')
    real_labels = np.load(path + '/ori_y.npy')

    store_string, result = mutation_test.mutation_test_ori(
        result, image_list, sess, x, preds, feed_dict)

    with open(store_path + "/ori_result.csv", "w") as f:
        f.write(store_string)

    with open(store_path + "/result.csv", "w") as f:
        f.write(result)

    # Close TF session
    sess.close()
    print('Finish.')
示例#30
0
def multi_testing_criteria(datasets,
                           model_name,
                           samples_path,
                           others='',
                           train_num=0,
                           test_num=0,
                           std_range=0.0,
                           k_n=1000,
                           k_l=2,
                           de=False,
                           attack='fgsm',
                           just_adv=False,
                           epoch=4,
                           datasettype='test'):
    """
    :param datasets
    :param model
    :param samples_path
    :param std_range
    :param k_n
    :param k_l
    :return:
    """
    X_train, Y_train, X_test, Y_test = get_data(datasets)
    X_train = X_train[:train_num]
    if datasettype == 'train':
        samples = X_train[:train_num]
    else:
        samples = X_test[:test_num]
    if samples_path not in ['test']:
        if not just_adv:
            [image_list, _, _, _] = get_data_file(samples_path)
            samples_adv = np.asarray(image_list)
            samples = np.concatenate((samples, samples_adv))
            print("Combine data")
        else:
            [image_list, _, _, _] = get_data_file(samples_path)
            samples = np.asarray(image_list)
            print("Just adv")

    if de == True:
        train_boundary_path = '../adv_result/' + datasets + '/' + attack + '/' + model_name + '/train_data'
        [image_list_train, _, _, _] = get_data_file(train_boundary_path)
        samples_train = np.asarray(image_list_train)

        X_train_boundary = np.concatenate((samples_train, X_train))
        store_path = "../multi_testing_criteria/" + datasets + "/" + model_name + "/" + attack + '/'
    else:
        X_train_boundary = X_train
        store_path = "../multi_testing_criteria/" + datasets + "/" + model_name + "/ori/"

    if not os.path.exists(store_path):
        os.makedirs(store_path)
        tf.reset_default_graph()
        sess, preds, x, y, model, feed_dict = model_load(datasets=datasets,
                                                         model_name=model_name,
                                                         de=de,
                                                         attack=attack,
                                                         epoch=epoch,
                                                         others=others)
        boundary = neuron_boundary(sess, x, X_train_boundary, model, feed_dict)
        sess.close()
        del sess, preds, x, y, model, feed_dict
        gc.collect()
        np.save(store_path + "boundary.npy", np.asarray(boundary))
    else:
        boundary = np.load(store_path + "boundary.npy").tolist()

    k_coverage, boundary_coverage, neuron_number = init_coverage_metric(
        boundary, k_n)

    if samples_path == 'test':
        if datasettype == 'train':
            store_path = store_path + 'train/'
        else:
            store_path = store_path + 'test/'
    else:
        if datasettype == 'train':
            store_path = store_path + 'train_adv' + samples_path.split(
                '/')[-3] + '/'
        else:
            store_path = store_path + 'test_adv' + samples_path.split(
                '/')[-3] + '/'

    if not os.path.exists(store_path):
        cal = True
        os.makedirs(store_path)
    else:
        cal = False

    NP = []
    n_batches = int(np.ceil(1.0 * samples.shape[0] / 256))
    for num in range(n_batches):
        print(num)
        start = num * 256
        end = np.minimum(len(samples), (num + 1) * 256)
        if cal:
            input_data = samples[start:end]
            tf.reset_default_graph()
            sess, preds, x, y, model, feed_dict = model_load(
                datasets=datasets,
                model_name=model_name,
                de=de,
                attack=attack,
                epoch=epoch,
                others=others)
            layers_output = calculate_layers(sess, x, model, feed_dict,
                                             input_data, store_path, num)

            sess.close()
            del sess, preds, x, y, model, feed_dict, input_data
            gc.collect()
        else:
            layers_output = np.load(store_path + 'layers_output_' + str(num) +
                                    '.npy')

        k_coverage, boundary_coverage = update_multi_coverage_neuron(
            layers_output, k_n, boundary, k_coverage, boundary_coverage,
            std_range)

        layer_coverage = calculate_coverage_layer(layers_output, k_l,
                                                  end - start)

        if num == 0:
            layer = [set([])] * layer_coverage.shape[0]
        for i in range(len(layer_coverage)):
            for j in range(len(layer_coverage[i])):
                # |表示按位运算
                layer[i] = layer[i] | layer_coverage[i][j]

        sample_coverage = np.transpose(layer_coverage, (1, 0))
        for i in range(len(sample_coverage)):
            sc = sample_coverage[i].tolist()
            if sc not in NP:
                NP.append(sc)

        del layers_output
        gc.collect()

    KMN = 0
    NB = 0
    SNA = 0
    for i in range(len(k_coverage)):
        for j in range(len(k_coverage[i])):
            for t in range(len(k_coverage[i][j])):
                if k_coverage[i][j][t] > 0:
                    KMN += 1
            if boundary_coverage[i][j][1] > 0:
                NB += 1
                SNA += 1
            if boundary_coverage[i][j][0] > 0:
                NB += 1
    KMN = 1.0 * KMN / (k_n * neuron_number)
    NB = 1.0 * NB / (2 * neuron_number)
    SNA = 1.0 * SNA / neuron_number

    TKNC = sum(len(neurons) for neurons in layer)
    TKNC = 1.0 * TKNC / neuron_number

    TKNP = len(NP)

    print([KMN, NB, SNA, TKNC, TKNP])
    return [KMN, NB, SNA, TKNC, TKNP]