示例#1
0
    print('Testing conv')
    print('dx error: ', rel_error(dx_num, dx))
    print('dw error: ', rel_error(dw_num, dw))
    print('db error: ', rel_error(db_num, db))

# TODO: write script to check the backpropagation on the whole CNN is correct
if check_cnn_back:
    model = CNN(image_size=(3, 8, 8),
                channels=3,
                conv_kernel=5,
                pool_kernel=2,
                hidden_units=10,
                n_classes=10)
    X = np.random.randn(2, 3, 8, 8)
    y = (np.random.rand(2) * 10).astype(np.int32)
    model.oracle(X, y)
    loss_fn = SoftmaxCE()

    for group in model.param_groups:
        for name, param in group.items():
            xx = param["param"]

            def fx(v):
                tmp = param['param']
                param['param'] = v
                f_x, _ = loss_fn(model.score(X), y)
                param['param'] = tmp
                return f_x

            d_num = eval_numerical_gradient(fx, xx, verbose=False)
if check_cnn_back:
    inputs = 2
    input_dim = (3, 16, 16)
    hidden_units = 10
    num_classes = 10
    num_filters = 3
    filter_size = 3
    pool_size = 2

    np.random.seed(231)
    X = np.random.randn(inputs, *input_dim)
    y = np.random.randint(num_classes, size=inputs)

    model = CNN(input_dim, num_filters, filter_size, pool_size, hidden_units,
                num_classes)
    loss, score = model.oracle(X, y)
    print('loss:', loss)
    a = ['w1', 'w2', 'w3']
    b = ['b1', 'b2', 'b3']

    for param_name in sorted(a):
        f = lambda _: model.oracle(X, y)[0]
        param_grad_num = eval_numerical_gradient(
            f,
            model.param_groups['w'][param_name]['param'],
            verbose=False,
            h=0.00001)
        e = rel_error(param_grad_num,
                      model.param_groups['w'][param_name]['grad'])
        print('%s relative error: %e' %
              (param_name,