def test_createNetworkCalled_ReturnsNetworkWithProperBetaDimensions(self):
        expectedDimensions = [3, 4, 5]

        (w, a, b) = neuralnetwork.create_network(expectedDimensions[0],
                                                 expectedDimensions[1],
                                                 expectedDimensions[2])

        for l in range(1, len(expectedDimensions)):
            self.assertEqual(len(b[l]), expectedDimensions[l])
    def test_createNetworkCalled_ReturnsNetworkWithProperWeightsHeightDimensions(
            self):
        expectedDimensions = [3, 4, 5]

        (w, a, b) = neuralnetwork.create_network(expectedDimensions[0],
                                                 expectedDimensions[1],
                                                 expectedDimensions[2])

        # Assert

        # We don't care about the first layer of weights because they are not applied

        for l in range(1, len(expectedDimensions)):
            expectedHeight = expectedDimensions[l]
            self.assertEqual(len(w[l]), expectedHeight)
 def test_createNetworkCalled_ReturnsTupleWithCorrectDimensions(self):
     n = neuralnetwork.create_network(1)
     self.assertEqual(len(n), 3)