def test_createNetworkCalled_ReturnsNetworkWithProperBetaDimensions(self): expectedDimensions = [3, 4, 5] (w, a, b) = neuralnetwork.create_network(expectedDimensions[0], expectedDimensions[1], expectedDimensions[2]) for l in range(1, len(expectedDimensions)): self.assertEqual(len(b[l]), expectedDimensions[l])
def test_createNetworkCalled_ReturnsNetworkWithProperWeightsHeightDimensions( self): expectedDimensions = [3, 4, 5] (w, a, b) = neuralnetwork.create_network(expectedDimensions[0], expectedDimensions[1], expectedDimensions[2]) # Assert # We don't care about the first layer of weights because they are not applied for l in range(1, len(expectedDimensions)): expectedHeight = expectedDimensions[l] self.assertEqual(len(w[l]), expectedHeight)
def test_createNetworkCalled_ReturnsTupleWithCorrectDimensions(self): n = neuralnetwork.create_network(1) self.assertEqual(len(n), 3)