files = sorted(glob(os.path.join(data_dir, 'hist_match_ct', '*.tif'))) # adjust gamma '''gamma_save_dir = os.path.join(data_dir, 'gamma_adjust') ersa_utils.make_dir_if_not_exist(gamma_save_dir) ga = gammaAdjust.GammaAdjust(gamma=gammas[sample_id - 1], path=gamma_save_dir) ga.run(force_run=False, file_list=files) files = sorted(glob(os.path.join(gamma_save_dir, '*.tif')))''' # get image mean img_mean = cm.get_channel_mean('', [[f] for f in files]) model_dir = r'/hdd6/Models/UNET_city/UnetCrop_spca_aug_xcity_0_PS(572, 572)_BS5_EP100_LR0.0001_DS60_DR0.1_SFN32' # test model '''nn_utils.tf_warn_level(3) unet = unet.UNet(class_num, patch_size, suffix=suffix, batch_size=bs) model_dir = r'/hdd6/Models/UNET_city/UnetCrop_spca_aug_xcity_0_PS(572, 572)_BS5_EP100_LR0.0001_DS60_DR0.1_SFN32' # model_dir = r'/hdd6/Models/Inria_decay/UnetCrop_inria_decay_0_PS(572, 572)_BS5_EP100_LR0.0001_DS60.0_DR0.1_SFN32' unet.evaluate([[f] for f in files], patch_size, tile_size, bs, img_mean, model_dir, gpu, save_result_parent_dir='aemo', sfn=sfn, force_run=False, score_results=False, split_char='.', best_model=False)''' my_dir = os.path.join(data_dir, 'bh_pred_ct') # make dirs if not os.path.exists(my_dir): os.makedirs(my_dir) # run detector file_list_valid = [[os.path.basename(x)] for x in files]
rgb_ext='.*rgb', gt_ext='.*gt_d255', file_ext='tif', force_run=False, clc_name=suffix) cm.print_meta_data() file_list_train = cm.load_files(field_name='aus10,aus30', field_id='', field_ext='.*rgb,.*gt_d255') file_list_valid = cm.load_files(field_name='aus50', field_id='', field_ext='.*rgb,.*gt_d255') chan_mean = cm.meta_data['chan_mean'] nn_utils.tf_warn_level(3) model_dir = r'/hdd6/Models/aemo/aemo_resize_new_loss/unet_aemo_0_PS(572, 572)_BS5_EP80_LR0.001_DS30_DR0.1' unet.evaluate(file_list_valid, patch_size, tile_size, bs, chan_mean, model_dir, gpu, save_result_parent_dir='aemo', sfn=32, force_run=True, score_results=True, split_char='.', load_epoch_num=4)
rgb_ext='.*rgb', gt_ext='.*gt', file_ext='tif', force_run=False, clc_name=suffix) cm.print_meta_data() file_list_train = cm.load_files(field_name='aus10,aus30', field_id='', field_ext='.*rgb,.*gt') file_list_valid = cm.load_files(field_name='aus50', field_id='', field_ext='.*rgb,.*gt') chan_mean = cm.meta_data['chan_mean'] nn_utils.tf_warn_level(3) model_dir = r'/hdd6/Models/aemo/new4/unet_aemo_1_PS(572, 572)_BS5_EP80_LR0.001_DS30_DR0.1' unet.evaluate(file_list_train, patch_size, tile_size, bs, chan_mean, model_dir, gpu, save_result_parent_dir='aemo', sfn=32, force_run=True, score_results=True, split_char='.', ds_name='train')
feature, label = reader_op unet.create_graph(feature, sfn) unet.compile(feature, label, n_train, n_valid, patch_size, ersaPath.PATH['model'], par_dir='test', loss_type='xent') train_hook = hook.ValueSummaryHook(verb_step, [unet.loss, unet.lr_op], value_names=['train_loss', 'learning_rate'], print_val=[0]) model_save_hook = hook.ModelSaveHook(unet.get_epoch_step()*10, unet.ckdir) valid_loss_hook = hook.ValueSummaryHook(unet.get_epoch_step(), [unet.loss], value_names=['valid_loss'], log_time=True, run_time=unet.n_valid) valid_iou_hook = hook.IoUSummaryHook(unet.get_epoch_step(), unet.loss_iou, log_time=True, run_time=unet.n_valid, cust_str='\t') image_hook = hook.ImageValidSummaryHook(unet.get_epoch_step(), unet.valid_images, feature, label, unet.pred, nn_utils.image_summary, img_mean=chan_mean) start_time = time.time() unet.train(train_hooks=[train_hook, model_save_hook], valid_hooks=[valid_loss_hook, valid_iou_hook, image_hook], train_init=train_init_op, valid_init=valid_init_op) print('Duration: {:.3f}'.format((time.time() - start_time)/3600))''' nn_utils.tf_warn_level(3) model_dir = r'/hdd6/Models/test/unet_test_PS(572, 572)_BS5_EP6_LR0.0001_DS60_DR0.1' unet.evaluate(file_list_valid, patch_size, tile_size, bs, chan_mean, model_dir, gpu, save_result_parent_dir='ersa', sfn=sfn, force_run=True)