示例#1
0
    trainTargetsSymbols,
    trainTargetClasses,
    testData,
    testDataSymbols,
    testTargets,
    testTargetsSymbols,
    validationData,
    validationDataSymbols,
    validationTargets,
    validationTargetsSymbols,
    validationTargetClasses 
] = data.loadDataSet()

# Construct Graph
x = tf.placeholder(tf.float32, [None, 20])
[weights, biases, y] = nn.constructNN(x, 20, 20, [256, 256])
y_ = tf.placeholder(tf.float32, [None, 20])

# Session Setup
loss = tf.reduce_mean(tf.reduce_sum(tf.square(y_ - y), reduction_indices = [1]))
train_step = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)

# Train NN
num_epochs = 5000

[
    opt_weights,
    for index, item in enumerate(trainTargets):
        trainTargetsCombined.append(
            np.concatenate((item, trainTargetsSymbols[index]), axis=0))
for index, item in enumerate(testData):
    testDataCombined.append(
        np.concatenate((item, testDataSymbols[index]), axis=0))
for index, item in enumerate(validationData):
    validationDataCombined.append(
        np.concatenate((item, validationDataSymbols[index]), axis=0))
for index, item in enumerate(validationTargets):
    validationTargetsCombined.append(
        np.concatenate((item, validationTargetsSymbols[index]), axis=0))

# Construct Graph
x = tf.placeholder(tf.float32, [None, 1588])
[weights, biases, y] = nn.constructNN(x, 1588, 1588, [100, 100, 100])
y_ = tf.placeholder(tf.float32, [None, 1588])

# Session Setup
loss = tf.reduce_mean(tf.reduce_sum(tf.square(y_ - y), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)

sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)

# Train NN
num_epochs = 3000

[
    opt_weights, opt_biases, final_weights, final_biases, min_training_loss,
import sys, datetime

sys.dont_write_bytecode = True
import utils, data, nn

# Load Datasets
trainData = []
trainTargets = []
for a in range(6, 10):
    for b in range(6, 10):
        trainData.append(utils.one_hot(a) + utils.one_hot(b))
        trainTargets.append(utils.one_hot((a + b) // 10) + utils.one_hot((a + b) % 10))

# Construct Graph
x = tf.placeholder(tf.float32, [None, 20])
[weights, biases, y] = nn.constructNN(x, 20, 20, [100, 100])
y_ = tf.placeholder(tf.float32, [None, 20])

# Session Setup
loss = tf.reduce_mean(tf.reduce_sum(tf.square(y_ - y), reduction_indices = [1]))
train_step = tf.train.AdamOptimizer(0.01).minimize(loss)

sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)

# Train NN
num_epochs = 100000

[
    opt_weights,