def main(): inputs, targets = preProcessing('konel_egg_train.csv') if check_point == "new": network = NeuralNetwork(34, 2, 15, 3, 0.01) elif check_point == "last": network = NeuralNetwork(34, 2, 15, 3, 0.01) network.load_model("../data/egg_model_weights.csv") print("Starting training eggnet:") time.sleep(1) for e in range(EPOCH): print("====================================") print("Epoch:", e, '/', EPOCH) for i in range(len(targets)): cost = network.train(inputs[i], targets[i]) print("Training done!") print("Saving weights file to ../data/egg_model_weights.csv") network.save_model('../data/egg_model_weights.csv') print("Done!") _test = input("Press Y for testing model / N to quit: ") if _test == "Y" or _test == "y": network = NeuralNetwork(34, 2, 15, 3) network.load_model('../data/egg_model_weights.csv') guess = [None] * len(inputs) score = 0 for i in range(len(inputs)): result = network.feedFoward(inputs[i]).T index = np.where(result == np.amax(result)) result = np.zeros(3) + 0.01 result[index[1]] = 0.99 guess[i] = result for i in range(len(targets)): if np.array_equal(guess[i], targets[i]): score += 1 print("Testing done:", "Score: ", score, " ", score * 100 / len(targets))