def main(): X, C, X_tst, C_tst = load_isolet() #print(X) Y = np.array([[1, 2, 3, 4]]) print(X.shape) #print(C) #print(C.shape) b1 = BatchNormalizer(X) b1.getMean() b1.getStd() b1.getNormalized() b1.getBatches()
def main(): X, C, X_tst, C_tst = load_isolet() #print(X) Y = np.array([[1, 2, 3, 4]]) #print(X.shape) #print(C) #print(C.shape) b1 = BatchNormalizer(X, C, batch_size=40, shuffle=True) train = b1.getBatches(X, C) test = b1.getBatches(X_tst, C_tst, test=True) #print(b1.cbatches.batch_num) print(X.shape) print(X_tst.shape)
from Trainer import Trainer from Evaluator import Evaluator from Model import Model from nn18_ex2_load import load_isolet import numpy as np import logging import os if __name__ == '__main__': # training and validation error collector ec = ErrorCollector() X, C, X_tst, C_tst = load_isolet() #print("X shape: ", X.shape[0]) #print("X shape: ", X.shape[1]) # Parameters and model epochs = 5 #learning_rate = 0.001 learning_rate = 0.01 model = Model(n_in=X.shape[1], n_hidden=300, n_out=26, n_layer=1) batch_size = 40 # setup logging log_file_name = 'logs' + os.sep + 'Log' + '_ep' + str( epochs) + '_hidu' + str(model.n_hidden) + '_hidl' + str( model.n_layer) + '_lr' + str(learning_rate) + '.log' logging.basicConfig(filename=log_file_name, level=logging.INFO)
import tensorflow as tf import numpy as np import numpy.random as rd from nn18_ex2_load import load_isolet import matplotlib.pyplot as plt Xa, C, X_test, C_test = load_isolet() print(Xa.shape) print(C.shape) print(X_test.shape) print(C_test.shape) #We create the C arrays with this function def createC(array): res = np.zeros((len(array), 26)) for i in range(len(array)): res[i][array[i] - 1] = 1 return res Ca = createC(C) Ca_Test = createC(C_test) # Give the dimension of the data and chose the number of hidden layer n_in = 300 n_out = 26 n_hidden = 20 # Set the variables W_hid = tf.Variable(rd.randn(n_in, n_hidden) / np.sqrt(n_in), trainable=True)