pf = strengthen_functions.PF81 nn = NeuralNetwork(strength_function=pf, image_scale=8, transmission_history_len=10**4) ''' train_imgs, _ = skl.load_data() train_imgs = train_imgs[number] size = len(train_imgs) ''' # average_img = skl.average_img_by_number(number) train_imgs = skl.get_imgs_by_number(number) plotting_strength = True if plotting_strength: strength_stats = [] start_time = datetime.datetime.now() for i in range(iterations): _, img = random.choice(train_imgs) nn.propagate_once(img, gray_max=16) if plotting_strength: if i % 10 == 0: strength_stats.append(nn.stats()['strength']) end_time = datetime.datetime.now() print('%s: ' % number, 'start time:', start_time, 'stop time: ', end_time) if plotting_strength: plt.plot(strength_stats) plt.savefig('./nn_growable_%s.png' % number) utils.write_pickle(nn.connections_matrix, './pkl/nn_growable_%s.pkl' % number)
action="store", dest="iterations", default=30000, help="default: 30000") args = parser.parse_args() number = int(args.number) iterations = int(args.iterations) pf = strengthen_functions.PF80 nn = NeuralNetwork(strength_function=pf, image_scale=8, transmission_history_len=10**4) average_img = skl.average_img_by_number(number) plotting_strength = False if plotting_strength: strength_stats = [] start_time = datetime.datetime.now() for i in range(iterations): nn.propagate_once(average_img, gray_max=16) if plotting_strength: if i % 10 == 0: strength_stats.append(nn.stats()['strength']) end_time = datetime.datetime.now() print('%s: ' % number, 'start time:', start_time, 'stop time: ', end_time) if plotting_strength: plt.plot(strength_stats) plt.savefig('./nn_growable_%s.png' % number) utils.write_pickle(nn.connections_matrix, './pkl/nn_growable_%s.pkl' % number)