network = dropout(network, 0.8) softmax = fully_connected(network, nClass, activation='softmax') sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000) top_k = tflearn.metrics.Top_k(3) network = tflearn.regression(softmax, optimizer=sgd, metric=top_k, loss='categorical_crossentropy', name='target') # Training model = tflearn.DNN(network, tensorboard_verbose=0) model.fit({'input': X}, {'target': Y}, validation_set=0.1, n_epoch=n_epoch1, snapshot_step=100, run_id='convnet_buflo'+str(iter)) # Save model model.save(os.path.join(model_path, 'Conv_buflo_'+str(iter)+'.tflearn')) prob_vector = model.predict(testX) k_list = [] # confidence thresholds confs = [0.1,0.3,0.5,0.7, 0.9] # top k accuracy k_list = [1, 2, 3] for topK in k_list: for conf in confs: file = os.path.join(HOME, 'results', 'Conv_Buflo' + '_top_' + str(topK) + '_' + gb + str( dim) + '_' + str(nClass) + '_' + str(dim) + '_conf_' + str(conf) + '.txt') nn_metrics.getMetricsTopK(exp, prob_vector, testY, nClass, file, topK, conf, iter, 0, mon_instance * nClass)
model = tflearn.DNN(net, tensorboard_verbose=0) model.fit(X, Y, batch_size=47, n_epoch=n_epoch1, validation_set=0.1) # Save model model.save(os.path.join(model_path, 'PFP_M_' + str(iter) + '.tflearn')) prob_vector = model.predict(testX) # print(prob_vector) k_list = [] confs = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] if b_label: ## Binary classification k_list = [1] else: k_list = [1, 2, 3, 4, 5] for topK in k_list: if not b_label: file = os.path.join( HOME, 'results', 'PFP_M_' + str(topK) + '_' + exp + '_' + gb + str(dim) + '_' + str(mon_instance * (nClass - 1)) + '_' + str(unClass) + '_' + str(n_epoch1) + '.txt') for conf in confs: nn_metrics.getMetricsTopK(exp, prob_vector, testY, nClass, file, topK, conf, iter, 0, 0) else: file = os.path.join( HOME, 'results', 'PFP_M_' + exp + '_' + gb + str(dim) + '_' + str(mon_instance * (nClass - 1)) + '_' + str(unClass) + '_' + str(n_epoch1) + '.txt') for conf in confs: nn_metrics.getMetricsTopK(exp, prob_vector, testY, nClass, file, topK, conf, iter, 0, 0)