示例#1
0
    #lnErr = 1e-5
    lnErr = 1e-2

    for i in range(max+1):
        err = 0.0;
        for ii in range(len(input)):
            err += bpn.trainEpoch(npA(input[ii]),npA(target[ii]))
        if i%2500 == 0:
        #if i%20 == 0:
            print "iteration {0}\tError : {1:0.6f}".format(i,err)
            #bpn.NN_cout("Train_"+str(i))
        if err <= lnErr:
            print "Min error reached at {0}".format(i)
            break

    #bpn.setWeights()

    bpn.printWeights()

    plt.figure(figsize=(10,5))
    # Draw real function
    x,y = samples['x'],samples['y']
    plt.plot(x,y,color='b',lw=1)
    # Draw network approximated function
    for i in range(len(input)):
        y[i] = bpn.run(npA(input[i]))
    plt.plot(x,y,color='r',lw=3)
    plt.axis([0,1,0,1])
    plt.show()

示例#2
0
        for ii in range(len(input)):
            err += bpn.trainEpoch(npA(input[ii]),npA(target[ii]))
            err += bpn.trainEpoch(npA(input2[ii]),npA(target2[ii]))
        if i%2500 == 0:
        #if i%20 == 0:
            print "iteration {0}\tError : {1:0.6f}".format(i,err)
            #bpn.NN_cout("Train_"+str(i))
        if err <= lnErr:
            print "Min error reached at {0}".format(i)
            break

    #bpn.setWeights()

    bpn.printWeights()
    for i in range(len(input)):
        output = bpn.run(npA(input[i]))
        print "in :"+str(input[i])+", ou : "+str(output)

    for i in range(len(input2)):
        output = bpn.run(npA(input2[i]))
        print "in2 :"+str(input2[i])+", ou2 : "+str(output)


    #bins = bins(20,0,100)
    #P.hist(v1,bins,histtype='step')
    #P.hist(v1,bins,histtype='step')


    """
    plt.figure(figsize=(10,5))
    # Draw real function