def __init__(self, dim, hidden_dim, autoencoder, nonlinearity='tanh', dt=1e-3, device=None): super(PixelLagrangian, self).__init__() self.autoencoder = autoencoder S_net = MLP(dim, hidden_dim, dim**2, nonlinearity).to(device) U_net = MLP(dim, hidden_dim, 1, nonlinearity).to(device) self.lag = LagrangianFriction(dim, S_net, U_net, dt=dt, device=device)
def train(): data = get_dataset() x = torch.tensor(data['x'], requires_grad=True, dtype=torch.float32) # x 实际上是位置和速度 test_x = torch.tensor(data['test_x'], requires_grad=True, dtype=torch.float32) _, acce = torch.Tensor(data['test_dx']).chunk(2, 1) _, test_acce = torch.Tensor(data['test_dx']).chunk(2, 1) N, freedom = x.shape freedom /= 2 input_dim = int(freedom * 2) output_dim = int(freedom) model_nn = MLP(input_dim, 50, output_dim, 'tanh') model = LNN(input_dim, differentiable_model=model_nn) optim = torch.optim.Adam(model.parameters(), 5e-3, weight_decay=1e-4) # vanilla train loop stats = {'train_loss': [], 'test_loss': []} torch.autograd.set_detect_anomaly(True) for step in range(500): #500 epoch # train step loss = 0 for i in range(100): acce_hat = model.forward_new(x[i]) loss = loss + L1_loss(acce[i], acce_hat) loss.backward() loss /= 100 optim.step() optim.zero_grad() print("step {}, train_loss {:.4e}, ".format(step, loss)) writer.add_scalar('LNN/spring_train_loss', loss, step)
def __init__(self, input_dim, hidden_dim, autoencoder, field_type='solenoidal', nonlinearity='tanh', baseline=False): super(PixelHNN, self).__init__() self.autoencoder = autoencoder self.baseline = baseline output_dim = input_dim if baseline else 2 nn_model = MLP(input_dim, hidden_dim, output_dim, nonlinearity) self.hnn = HNN(input_dim, differentiable_model=nn_model, field_type=field_type, baseline=baseline)
def train(args): # set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) # init model and optimizer if args.verbose: print("Training baseline model:" if args.baseline else "Training HNN model:") output_dim = args.input_dim if args.baseline else 2 nn_model = MLP(args.input_dim, args.hidden_dim, output_dim, args.nonlinearity) model = HNN(args.input_dim, differentiable_model=nn_model, field_type=args.field_type, baseline=args.baseline) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=0) # arrange data data = get_dataset(args.name, args.save_dir, verbose=True) x = torch.tensor( data['coords'], requires_grad=True, dtype=torch.float32) test_x = torch.tensor( data['test_coords'], requires_grad=True, dtype=torch.float32) dxdt = torch.Tensor(data['dcoords']) test_dxdt = torch.Tensor(data['test_dcoords']) # vanilla train loop stats = {'train_loss': [], 'test_loss': []} for step in range(args.total_steps+1): # train step ixs = torch.randperm(x.shape[0])[:args.batch_size] dxdt_hat = model.time_derivative(x[ixs]) dxdt_hat += args.input_noise * torch.randn(*x[ixs].shape) # add noise, maybe loss = L2_loss(dxdt[ixs], dxdt_hat) loss.backward() grad = torch.cat([p.grad.flatten() for p in model.parameters()]).clone() optim.step() ; optim.zero_grad() # run test data test_ixs = torch.randperm(test_x.shape[0])[:args.batch_size] test_dxdt_hat = model.time_derivative(test_x[test_ixs]) test_dxdt_hat += args.input_noise * torch.randn(*test_x[test_ixs].shape) # add noise, maybe test_loss = L2_loss(test_dxdt[test_ixs], test_dxdt_hat) # logging stats['train_loss'].append(loss.item()) stats['test_loss'].append(test_loss.item()) if args.verbose and step % args.print_every == 0: print("step {}, train_loss {:.4e}, test_loss {:.4e}, grad norm {:.4e}, grad std {:.4e}" .format(step, loss.item(), test_loss.item(), grad@grad, grad.std())) train_dxdt_hat = model.time_derivative(x) train_dist = (dxdt - train_dxdt_hat)**2 test_dxdt_hat = model.time_derivative(test_x) test_dist = (test_dxdt - test_dxdt_hat)**2 print('Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}' .format(train_dist.mean().item(), train_dist.std().item()/np.sqrt(train_dist.shape[0]), test_dist.mean().item(), test_dist.std().item()/np.sqrt(test_dist.shape[0]))) return model, stats
def get_hnn_model(args, baseline): output_dim = args.input_dim if args.baseline else 2 nn_model = MLP(args.input_dim, 400, output_dim, args.nonlinearity) model = HNN(args.input_dim, differentiable_model=nn_model, field_type=args.field_type, baseline=args.baseline) label = '-baseline' if args.baseline else '-hnn' label = label + '-rad' if args.rad else label path = '{}/{}{}.tar'.format(args.save_dir, args.name, label) return model
def __init__(self, dim, autoencoder, nonlinearity='tanh', dt=1e-3, M_hidden=300, V_hidden=50, g_hidden=200, device=None): super(PixelSymODEN_R, self).__init__() self.autoencoder = autoencoder M_net = PSD(dim, M_hidden, dim).to(device) V_net = MLP(dim, V_hidden, 1).to(device) g_net = MLP(dim, g_hidden, dim).to(device) self.symoden = SymODEN_R(dim * 2, M_net=M_net, V_net=V_net, g_net=g_net, device=device, baseline=False, structure=True)
def get_model(args, baseline, structure, naive, num_points): M_net = PSD(3, 400, 2).to(device) g_net = MatrixNet(3, 300, 4, shape=(2,2)).to(device) if structure == False: if naive and baseline: raise RuntimeError('argument *baseline* and *naive* cannot both be true') elif naive: input_dim = 6 output_dim = 5 nn_model = MLP(input_dim, 1000, output_dim, args.nonlinearity).to(device) model = SymODEN_R1_T1(args.num_angle, H_net=nn_model, device=device, baseline=baseline, naive=naive, u_dim=2) elif baseline: input_dim = 6 output_dim = 4 nn_model = MLP(input_dim, 700, output_dim, args.nonlinearity).to(device) model = SymODEN_R1_T1(args.num_angle, H_net=nn_model, M_net=M_net, device=device, baseline=baseline, naive=naive, u_dim=2) else: input_dim = 5 output_dim = 1 nn_model = MLP(input_dim, 500, output_dim, args.nonlinearity).to(device) model = SymODEN_R1_T1(args.num_angle, H_net=nn_model, M_net=M_net, g_net=g_net, device=device, baseline=baseline, naive=naive, u_dim=2) elif structure == True and baseline ==False and naive==False: V_net = MLP(3, 300, 1).to(device) model = SymODEN_R1_T1(args.num_angle, M_net=M_net, V_net=V_net, g_net=g_net, device=device, baseline=baseline, structure=True, u_dim=2).to(device) else: raise RuntimeError('argument *structure* is set to true, no *baseline* or *naive*!') if naive: label = '-naive_ode' elif baseline: label = '-baseline_ode' else: label = '-hnn_ode' struct = '-struct' if structure else '' path = '{}/{}{}{}-{}-p{}.tar'.format(args.save_dir, args.name, label, struct, args.solver, args.num_points) model.load_state_dict(torch.load(path, map_location=device)) path = '{}/{}{}{}-{}-p{}-stats.pkl'.format(args.save_dir, args.name, label, struct, args.solver, args.num_points) stats = from_pickle(path) return model, stats
def get_model(args, baseline, structure, damping, num_points, gym=False): if structure == False and baseline == True: nn_model = MLP(args.input_dim, 600, args.input_dim, args.nonlinearity).to(device) model = SymODEN_R(args.input_dim, H_net=nn_model, device=device, baseline=True) elif structure == False and baseline == False: H_net = MLP(args.input_dim, 400, 1, args.nonlinearity).to(device) g_net = MLP(int(args.input_dim / 2), 200, int(args.input_dim / 2)).to(device) model = SymODEN_R(args.input_dim, H_net=H_net, g_net=g_net, device=device, baseline=False) elif structure == True and baseline == False: # M_net = MLP(1, args.hidden_dim, 1).to(device) M_net = MLP(int(args.input_dim / 2), 300, int(args.input_dim / 2)) V_net = MLP(int(args.input_dim / 2), 50, 1).to(device) g_net = MLP(int(args.input_dim / 2), 200, int(args.input_dim / 2)).to(device) model = SymODEN_R(args.input_dim, M_net=M_net, V_net=V_net, g_net=g_net, device=device, baseline=False, structure=True).to(device) else: raise RuntimeError( 'argument *baseline* and *structure* cannot both be true') model_name = 'baseline_ode' if baseline else 'hnn_ode' struct = '-struct' if structure else '' rad = '-rad' if args.rad else '' path = '{}pend-{}{}-{}-p{}{}.tar'.format(args.save_dir, model_name, struct, args.solver, num_points, rad) model.load_state_dict(torch.load(path, map_location=device)) path = '{}/pend-{}{}-{}-p{}-stats{}.pkl'.format(args.save_dir, model_name, struct, args.solver, num_points, rad) stats = from_pickle(path) return model, stats
def train(args): # import ODENet # from torchdiffeq import odeint from torchdiffeq import odeint_adjoint as odeint device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu') # reproducibility: set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # init model and optimizer if args.verbose: print("Start training with num of points = {} and solver {}.".format(args.num_points, args.solver)) if args.structure == False and args.baseline == True: nn_model = MLP(args.input_dim, 600, args.input_dim, args.nonlinearity).to(device) model = SymODEN_R(args.input_dim, H_net=nn_model, device=device, baseline=True) elif args.structure == False and args.baseline == False: H_net = MLP(args.input_dim, 400, 1, args.nonlinearity).to(device) g_net = MLP(int(args.input_dim/2), 200, int(args.input_dim/2)).to(device) model = SymODEN_R(args.input_dim, H_net=H_net, g_net=g_net, device=device, baseline=False) elif args.structure == True and args.baseline ==False: M_net = MLP(int(args.input_dim/2), 300, int(args.input_dim/2)) V_net = MLP(int(args.input_dim/2), 50, 1).to(device) g_net = MLP(int(args.input_dim/2), 200, int(args.input_dim/2)).to(device) model = SymODEN_R(args.input_dim, M_net=M_net, V_net=V_net, g_net=g_net, device=device, baseline=False, structure=True).to(device) else: raise RuntimeError('argument *baseline* and *structure* cannot both be true') num_parm = get_model_parm_nums(model) print('model contains {} parameters'.format(num_parm)) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=1e-4) # arrange data us = [-2.0, -1.0, 0.0, 1.0, 2.0] # us = [0.0] data = get_dataset(seed=args.seed, timesteps=45, save_dir=args.save_dir, rad=args.rad, us=us, samples=50) train_x, t_eval = arrange_data(data['x'], data['t'], num_points=args.num_points) test_x, t_eval = arrange_data(data['test_x'], data['t'], num_points=args.num_points) train_x = torch.tensor(train_x, requires_grad=True, dtype=torch.float32).to(device) test_x = torch.tensor(test_x, requires_grad=True, dtype=torch.float32).to(device) t_eval = torch.tensor(t_eval, requires_grad=True, dtype=torch.float32).to(device) # training loop stats = {'train_loss': [], 'test_loss': [], 'forward_time': [], 'backward_time': [],'nfe': []} for step in range(args.total_steps+1): train_loss = 0 test_loss = 0 for i in range(train_x.shape[0]): t = time.time() train_x_hat = odeint(model, train_x[i, 0, :, :], t_eval, method=args.solver) forward_time = time.time() - t train_loss_mini = L2_loss(train_x[i,:,:,:], train_x_hat) train_loss = train_loss + train_loss_mini t = time.time() train_loss_mini.backward() ; optim.step() ; optim.zero_grad() backward_time = time.time() - t # run test data test_x_hat = odeint(model, test_x[i, 0, :, :], t_eval, method=args.solver) test_loss_mini = L2_loss(test_x[i,:,:,:], test_x_hat) test_loss = test_loss + test_loss_mini # logging stats['train_loss'].append(train_loss.item()) stats['test_loss'].append(test_loss.item()) stats['forward_time'].append(forward_time) stats['backward_time'].append(backward_time) stats['nfe'].append(model.nfe) if args.verbose and step % args.print_every == 0: print("step {}, train_loss {:.4e}, test_loss {:.4e}".format(step, train_loss.item(), test_loss.item())) # calculate loss mean and std for each traj. train_x, t_eval = data['x'], data['t'] test_x, t_eval = data['test_x'], data['t'] train_x = torch.tensor(train_x, requires_grad=True, dtype=torch.float32).to(device) test_x = torch.tensor(test_x, requires_grad=True, dtype=torch.float32).to(device) t_eval = torch.tensor(t_eval, requires_grad=True, dtype=torch.float32).to(device) train_loss = [] test_loss = [] for i in range(train_x.shape[0]): train_x_hat = odeint(model, train_x[i, 0, :, :], t_eval, method=args.solver) train_loss.append((train_x[i,:,:,:] - train_x_hat)**2) # run test data test_x_hat = odeint(model, test_x[i, 0, :, :], t_eval, method=args.solver) test_loss.append((test_x[i,:,:,:] - test_x_hat)**2) train_loss = torch.cat(train_loss, dim=1) train_loss_per_traj = torch.sum(train_loss, dim=(0,2)) test_loss = torch.cat(test_loss, dim=1) test_loss_per_traj = torch.sum(test_loss, dim=(0,2)) print('Final trajectory train loss {:.4e} +/- {:.4e}\nFinal trajectory test loss {:.4e} +/- {:.4e}' .format(train_loss_per_traj.mean().item(), train_loss_per_traj.std().item(), test_loss_per_traj.mean().item(), test_loss_per_traj.std().item())) stats['traj_train_loss'] = train_loss_per_traj.detach().cpu().numpy() stats['traj_test_loss'] = test_loss_per_traj.detach().cpu().numpy() return model, stats
def train(args): # set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) # init model and optimizer if args.verbose: print("Training baseline model:" if args.baseline else "Training HNN model:") output_dim = args.input_dim if args.baseline else 2 nn_model = MLP(args.input_dim, 400, output_dim, args.nonlinearity) model = HNN(args.input_dim, differentiable_model=nn_model, field_type=args.field_type, baseline=args.baseline) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=1e-4) # the data API is different # make sure it is a fair comparison # generate the data the same way as in the SymODEN # compute the time derivative based on the generated data us = [0.0] data = get_dataset(seed=args.seed, save_dir=args.save_dir, rad=args.rad, us=us, samples=50, timesteps=45) # arrange data train_x, t_eval = data['x'][0,:,:,0:2], data['t'] test_x, t_eval = data['test_x'][0,:,:,0:2], data['t'] train_dxdt = (train_x[1:,:,:] - train_x[:-1,:,:]) / (t_eval[1] - t_eval[0]) test_dxdt = (test_x[1:,:,:] - test_x[:-1,:,:]) / (t_eval[1] - t_eval[0]) train_x = train_x[0:-1,:,:].reshape((-1,2)) test_x = test_x[0:-1,:,:].reshape((-1,2)) test_dxdt = test_dxdt.reshape((-1,2)) train_dxdt = train_dxdt.reshape((-1,2)) x = torch.tensor( train_x, requires_grad=True, dtype=torch.float32) test_x = torch.tensor( test_x, requires_grad=True, dtype=torch.float32) dxdt = torch.Tensor(train_dxdt) test_dxdt = torch.Tensor(test_dxdt) # vanilla train loop stats = {'train_loss': [], 'test_loss': []} for step in range(args.total_steps+1): # train step dxdt_hat = model.rk4_time_derivative(x) if args.use_rk4 else model.time_derivative(x) loss = L2_loss(dxdt, dxdt_hat) loss.backward() ; optim.step() ; optim.zero_grad() # run test data test_dxdt_hat = model.rk4_time_derivative(test_x) if args.use_rk4 else model.time_derivative(test_x) test_loss = L2_loss(test_dxdt, test_dxdt_hat) # logging stats['train_loss'].append(loss.item()) stats['test_loss'].append(test_loss.item()) if args.verbose and step % args.print_every == 0: print("step {}, train_loss {:.4e}, test_loss {:.4e}".format(step, loss.item(), test_loss.item())) train_dxdt_hat = model.time_derivative(x) train_dist = (dxdt - train_dxdt_hat)**2 test_dxdt_hat = model.time_derivative(test_x) test_dist = (test_dxdt - test_dxdt_hat)**2 print('Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}' .format(train_dist.mean().item(), train_dist.std().item()/np.sqrt(train_dist.shape[0]), test_dist.mean().item(), test_dist.std().item()/np.sqrt(test_dist.shape[0]))) return model, stats
def train(args): # set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) # init model and optimizer if args.verbose: print("Training baseline model:" if args. baseline else "Training HNN model:") output_dim = args.input_dim if args.baseline else 2 nn_model = MLP(args.input_dim, args.hidden_dim, output_dim, args.nonlinearity) model = HNN(args.input_dim, differentiable_model=nn_model, field_type=args.field_type, baseline=args.baseline) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=1e-4) # arrange data data = get_dataset(seed=args.seed) x = torch.tensor(data['x'], requires_grad=True, dtype=torch.float32) test_x = torch.tensor(data['test_x'], requires_grad=True, dtype=torch.float32) dxdt = torch.Tensor(data['dx']) test_dxdt = torch.Tensor(data['test_dx']) # vanilla train loop stats = {'train_loss': [], 'test_loss': []} for step in range(args.total_steps + 1): # train step dxdt_hat = model.rk4_time_derivative( x) if args.use_rk4 else model.time_derivative(x) loss = L2_loss(dxdt, dxdt_hat) loss.backward() optim.step() optim.zero_grad() # run test data test_dxdt_hat = model.rk4_time_derivative( test_x) if args.use_rk4 else model.time_derivative(test_x) test_loss = L2_loss(test_dxdt, test_dxdt_hat) # logging stats['train_loss'].append(loss.item()) stats['test_loss'].append(test_loss.item()) if args.verbose and step % args.print_every == 0: print("step {}, train_loss {:.4e}, test_loss {:.4e}".format( step, loss.item(), test_loss.item())) train_dxdt_hat = model.time_derivative(x) train_dist = (dxdt - train_dxdt_hat)**2 test_dxdt_hat = model.time_derivative(test_x) test_dist = (test_dxdt - test_dxdt_hat)**2 print( 'Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}' .format(train_dist.mean().item(), train_dist.std().item() / np.sqrt(train_dist.shape[0]), test_dist.mean().item(), test_dist.std().item() / np.sqrt(test_dist.shape[0]))) return model, stats
def train(args): if torch.cuda.is_available() and not args.cpu: device = torch.device("cuda:0") torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.empty_cache() print("Running on the GPU") else: device = torch.device("cpu") print("Running on the CPU") # set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) print("{} {}".format(args.folder, args.speed)) print("Training scaled model:" if args.scaled else "Training noisy model:") print('{} pairs of coords in latent space '.format(args.latent_dim)) #using universal autoencoder, pre-encode the training points autoencoder = MLPAutoencoder(args.input_dim_ae, args.hidden_dim, args.latent_dim * 2, nonlinearity='relu') full_model = PixelHNN(args.latent_dim * 2, args.hidden_dim, autoencoder=autoencoder, nonlinearity=args.nonlinearity, baseline=args.baseline) path = "{}/saved_models/{}.tar".format(args.save_dir, args.ae_path) full_model.load_state_dict(torch.load(path)) full_model.eval() autoencoder_model = full_model.autoencoder # get dataset (no test data for now) data = get_dataset(args.folder, args.speed, scaled=args.scaled, split=args.split_data, experiment_dir=args.experiment_dir, tensor=True) gcoords = autoencoder_model.encode(data).cpu().detach().numpy() x = torch.tensor(gcoords, dtype=torch.float, requires_grad=True) dx_np = full_model.time_derivative( torch.tensor(gcoords, dtype=torch.float, requires_grad=True)).cpu().detach().numpy() dx = torch.tensor(dx_np, dtype=torch.float) nnmodel = MLP(args.input_dim, args.hidden_dim, args.output_dim) model = HNN(2, nnmodel) model.to(device) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=args.weight_decay) # vanilla ae train loop stats = {'train_loss': [], 'test_loss': []} for step in range(args.total_steps + 1): # train step ixs = torch.randperm(x.shape[0])[:args.batch_size] x_train, dxdt = x[ixs].to(device), dx[ixs].to(device) dxdt_hat = model.time_derivative(x_train) loss = L2_loss(dxdt, dxdt_hat) loss.backward() optim.step() optim.zero_grad() stats['train_loss'].append(loss.item()) if step % args.print_every == 0: print("step {}, train_loss {:.4e}".format(step, loss.item())) # train_dist = hnn_ae_loss(x, x_next, model, return_scalar=False) # print('Final train loss {:.4e} +/- {:.4e}' # .format(train_dist.mean().item(), train_dist.std().item() / np.sqrt(train_dist.shape[0]))) return model
def train(args): # set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) # init model and optimizer if args.verbose: print("Training baseline model:" if args.baseline else "Training HNN model:") S_net = MLP(int(args.input_dim/2), 140, int(args.input_dim/2)**2, args.nonlinearity) U_net = MLP(int(args.input_dim/2), 140, 1, args.nonlinearity) model = Lagrangian(int(args.input_dim/2), S_net, U_net, dt=1e-3) num_parm = get_model_parm_nums(model) print('model contains {} parameters'.format(num_parm)) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=1e-4) # arrange data data = get_lag_dataset(seed=args.seed) x = torch.tensor( data['x'], requires_grad=False, dtype=torch.float32) # append zero control u = torch.zeros_like(x[:,0]).unsqueeze(-1) x = torch.cat((x, u), -1) test_x = torch.tensor( data['test_x'], requires_grad=False, dtype=torch.float32) # append zero control test_x = torch.cat((test_x, u), -1) dxdt = torch.Tensor(data['dx']) test_dxdt = torch.Tensor(data['test_dx']) # vanilla train loop stats = {'train_loss': [], 'test_loss': []} for step in range(args.total_steps+1): # train step dq, dp, du = model.time_derivative(x).split(1,1) dxdt_hat = torch.cat((dq, dp), -1) loss = L2_loss(dxdt, dxdt_hat) loss.backward() ; optim.step() ; optim.zero_grad() # run test data dq_test, dp_test, du_test = model.time_derivative(test_x).split(1,1) test_dxdt_hat = torch.cat((dq_test, dp_test), -1) test_loss = L2_loss(test_dxdt, test_dxdt_hat) # logging stats['train_loss'].append(loss.item()) stats['test_loss'].append(test_loss.item()) if args.verbose and step % args.print_every == 0: print("step {}, train_loss {:.4e}, test_loss {:.4e}".format(step, loss.item(), test_loss.item())) train_dq, train_dp, train_du = model.time_derivative(x).split(1,1) train_dxdt_hat = torch.cat((train_dq, train_dp), -1) train_dist = (dxdt - train_dxdt_hat)**2 test_dq, test_dp, test_du = model.time_derivative(test_x).split(1,1) test_dxdt_hat = torch.cat((test_dq, test_dp), -1) test_dist = (test_dxdt - test_dxdt_hat)**2 print('Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}' .format(train_dist.mean().item(), train_dist.std().item()/np.sqrt(train_dist.shape[0]), test_dist.mean().item(), test_dist.std().item()/np.sqrt(test_dist.shape[0]))) return model, stats
def train(args): device = torch.device( 'cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu') # reproducibility: set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # init model and optimizer if args.verbose: print("Start training with num of points = {} and solver {}.".format( args.num_points, args.solver)) if args.structure == False and args.baseline == True: nn_model = MLP(args.input_dim, 600, args.input_dim, args.nonlinearity) model = SymODEN_R(args.input_dim, H_net=nn_model, device=device, baseline=True) elif args.structure == False and args.baseline == False: H_net = MLP(args.input_dim, 400, 1, args.nonlinearity) g_net = MLP(int(args.input_dim / 2), 200, int(args.input_dim / 2)) model = SymODEN_R(args.input_dim, H_net=H_net, g_net=g_net, device=device, baseline=False) elif args.structure == True and args.baseline == False: M_net = MLP(int(args.input_dim / 2), 300, int(args.input_dim / 2)) V_net = MLP(int(args.input_dim / 2), 50, 1) g_net = MLP(int(args.input_dim / 2), 200, int(args.input_dim / 2)) model = SymODEN_R(args.input_dim, M_net=M_net, V_net=V_net, g_net=g_net, device=device, baseline=False, structure=True) else: raise RuntimeError( 'argument *baseline* and *structure* cannot both be true') num_parm = get_model_parm_nums(model) print('model contains {} parameters'.format(num_parm)) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=1e-4) data = get_dataset(seed=args.seed) # modified to use the hnn stuff x = torch.tensor(data['x'], requires_grad=True, dtype=torch.float32) # [1125, 2] Bx2 # append zero control u = torch.zeros_like(x[:, 0]).unsqueeze(-1) x = torch.cat((x, u), -1) test_x = torch.tensor(data['test_x'], requires_grad=True, dtype=torch.float32) # append zero control test_x = torch.cat((test_x, u), -1) dxdt = torch.Tensor(data['dx']) # [1125, 2] Bx2 test_dxdt = torch.Tensor(data['test_dx']) # training loop stats = {'train_loss': [], 'test_loss': []} for step in range(args.total_steps + 1): # modified to match hnn dq, dp, du = model.time_derivative(x).split(1, 1) dxdt_hat = torch.cat((dq, dp), -1) loss = L2_loss(dxdt, dxdt_hat) loss.backward() optim.step() optim.zero_grad() # run test data dq_test, dp_test, du_test = model.time_derivative(test_x).split(1, 1) test_dxdt_hat = torch.cat((dq_test, dp_test), -1) test_loss = L2_loss(test_dxdt, test_dxdt_hat) # logging stats['train_loss'].append(loss.item()) stats['test_loss'].append(test_loss.item()) if args.verbose and step % args.print_every == 0: print("step {}, train_loss {:.4e}, test_loss {:.4e}".format( step, loss.item(), test_loss.item())) train_dq, train_dp, train_du = model.time_derivative(x).split(1, 1) train_dxdt_hat = torch.cat((train_dq, train_dp), -1) train_dist = (dxdt - train_dxdt_hat)**2 test_dq, test_dp, test_du = model.time_derivative(test_x).split(1, 1) test_dxdt_hat = torch.cat((test_dq, test_dp), -1) test_dist = (test_dxdt - test_dxdt_hat)**2 print( 'Final train loss {:.4e} +/- {:.4e}\nFinal test loss {:.4e} +/- {:.4e}' .format(train_dist.mean().item(), train_dist.std().item() / np.sqrt(train_dist.shape[0]), test_dist.mean().item(), test_dist.std().item() / np.sqrt(test_dist.shape[0]))) return model, stats
def train(args): if torch.cuda.is_available() and not args.cpu: device = torch.device("cuda:0") torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.empty_cache() print("Running on the GPU") else: device = torch.device("cpu") print("Running on the CPU") # set random seed torch.manual_seed(args.seed) np.random.seed(args.seed) # get dataset (no test data for now) angular_velo, acc_1, acc_2, sound = get_dataset_split( args.folder, args.speed, scaled=args.scaled, experiment_dir=args.experiment_dir, tensor=True) sub_col = { 0: [angular_velo, 1, 'v'], 1: [acc_1, 3, 'a1'], 2: [acc_2, 3, 'a2'], 3: [sound, 1, 's'] } col2use = sub_col[args.sub_columns][0] # using universal autoencoder, pre-encode the training points autoencoder = MLPAutoencoder(sub_col[args.sub_columns][1], args.hidden_dim, args.latent_dim * 2, dropout_rate=args.dropout_rate_ae) full_model = PixelHNN(args.latent_dim * 2, args.hidden_dim, autoencoder=autoencoder, nonlinearity=args.nonlinearity, baseline=args.baseline, dropout_rate=args.dropout_rate) path = "{}/saved_models/{}-{}.tar".format(args.save_dir, args.ae_path, sub_col[args.sub_columns][2]) full_model.load_state_dict(torch.load(path)) full_model.eval() autoencoder_model = full_model.autoencoder gcoords = autoencoder_model.encode(col2use).cpu().detach().numpy() x = torch.tensor(gcoords, dtype=torch.float, requires_grad=True) dx_np = full_model.time_derivative( torch.tensor(gcoords, dtype=torch.float, requires_grad=True)).cpu().detach().numpy() dx = torch.tensor(dx_np, dtype=torch.float) nnmodel = MLP(args.input_dim, args.hidden_dim, args.output_dim) model = HNN(2, nnmodel) model.to(device) optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=args.weight_decay) print("Data from {} {}, column: {}".format(args.folder, args.speed, sub_col[args.sub_columns][2])) # x = torch.tensor(col2use[:-1], dtype=torch.float) # x_next = torch.tensor(col2use[1:], dtype=torch.float) # # autoencoder = MLPAutoencoder(sub_col[args.sub_columns][1], args.hidden_dim, args.latent_dim * 2, dropout_rate=args.dropout_rate_ae) # model = PixelHNN(args.latent_dim * 2, args.hidden_dim, # autoencoder=autoencoder, nonlinearity=args.nonlinearity, baseline=args.baseline, dropout_rate=args.dropout_rate) # model.to(device) # optim = torch.optim.Adam(model.parameters(), args.learn_rate, weight_decay=args.weight_decay) # vanilla ae train loop stats = {'train_loss': []} for step in range(args.total_steps + 1): # train step ixs = torch.randperm(x.shape[0])[:args.batch_size] x_train, dxdt = x[ixs].to(device), dx[ixs].to(device) dxdt_hat = model.time_derivative(x_train) loss = L2_loss(dxdt, dxdt_hat) loss.backward() optim.step() optim.zero_grad() stats['train_loss'].append(loss.item()) if step % args.print_every == 0: print("step {}, train_loss {:.4e}".format(step, loss.item())) # train_dist = hnn_ae_loss(x, x_next, model, return_scalar=False) # print('Final train loss {:.4e} +/- {:.4e}' # .format(train_dist.mean().item(), train_dist.std().item() / np.sqrt(train_dist.shape[0]))) return model