def apply_OutputNN(inputs, activation_type): activation_fun = nn_utils.get_activation_fun(activation_type) with tf.variable_scope('hidden1') as scope: weights = tf.get_variable("weights") biases = tf.get_variable("biases") hidden1 = activation_fun(tf.matmul(inputs, weights) + biases) with tf.variable_scope('output') as scope: weights = tf.get_variable("weights") return tf.matmul(hidden1, weights)
def apply_OutputNN(inputs, hidden_activation_type, output_activation_type): ''' output_activation_type: e.g. use None (==linear) for regression problems ''' hidden_activation_type = nn_utils.get_activation_fun(hidden_activation_type) output_activation_type = nn_utils.get_activation_fun(output_activation_type) with tf.variable_scope('hidden1') as scope: weights = tf.get_variable("weights") biases = tf.get_variable("biases") hidden1 = hidden_activation_type(tf.matmul(inputs, weights) + biases) with tf.variable_scope('output') as scope: weights = tf.get_variable("weights") out = tf.matmul(hidden1, weights) if output_activation_type is not None: return output_activation_type(out) return out