def db_from_df(train, test, bs=1024): # Create TensorDatasets train_ds = TensorDataset(torch.tensor(train.values), torch.tensor(train.values)) valid_ds = TensorDataset(torch.tensor(test.values), torch.tensor(test.values)) # Create DataLoaders train_dl, valid_dl = get_data(train_ds, valid_ds, bs=bs) # Return DataBunch return basic_data.DataBunch(train_dl, valid_dl)
test = test[test['m'] > 1e-3] if input_dim == 25: train.pop('Width') train.pop('WidthPhi') test.pop('Width') test.pop('WidthPhi') bs = 1024 # Create TensorDatasets train_ds = TensorDataset(torch.tensor(train.values, dtype=torch.float), torch.tensor(train.values, dtype=torch.float)) valid_ds = TensorDataset(torch.tensor(test.values, dtype=torch.float), torch.tensor(test.values, dtype=torch.float)) # Create DataLoaders train_dl, valid_dl = get_data(train_ds, valid_ds, bs=bs) # Return DataBunch db = basic_data.DataBunch(train_dl, valid_dl) module_name = 'AE_bn_LeakyReLU' module = AE_bn_LeakyReLU grid_search_folder = module_name + '_AOD_grid_search_custom_normalization_1500epochs/' model_folder = 'AE_%d_200_200_200_%d_200_200_200_%d' % (input_dim, latent_dim, input_dim) train_folder = 'AE_bn_LeakyReLU_bs4096_lr1e-02_wd1e-02_ppNA' save = False loss_func = nn.MSELoss() plt.close('all')