示例#1
0
    def res_unit(x, scope_name, rng, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> BinaryTanh
            with nn.parameter_scope("conv1"):
                h = PF.binary_connect_convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.binary_tanh(h)
            # Conv -> BN -> BinaryTanh
            with nn.parameter_scope("conv2"):
                h = PF.binary_connect_convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.binary_tanh(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.binary_connect_convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> BinaryTanh
            h = F.binary_tanh(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))

        return h
示例#2
0
def network01E(x, y, test=False):
    # Input:x -> 1,64,48
    # BinaryConnectConvolution -> 64,60,44
    h = PF.binary_connect_convolution(x,
                                      64, (5, 5), (0, 0),
                                      name='BinaryConnectConvolution')
    # MaxPooling -> 64,30,22
    h = F.max_pooling(h, (2, 2), (2, 2))
    # BatchNormalization
    h = PF.batch_normalization(h, (1, ),
                               0.5,
                               0.01,
                               not test,
                               name='BatchNormalization')
    # BinarySigmoid
    h = F.binary_sigmoid(h)
    # BinaryConnectConvolution_2 -> 64,26,18
    h = PF.binary_connect_convolution(h,
                                      64, (5, 5), (0, 0),
                                      name='BinaryConnectConvolution_2')
    # MaxPooling_2 -> 64,13,9
    h = F.max_pooling(h, (2, 2), (2, 2))
    # BatchNormalization_2
    h = PF.batch_normalization(h, (1, ),
                               0.5,
                               0.01,
                               not test,
                               name='BatchNormalization_2')
    # BinarySigmoid_2
    h = F.binary_sigmoid(h)
    # BinaryConnectAffine -> 512
    h = PF.binary_connect_affine(h, (512, ), name='BinaryConnectAffine')
    # BatchNormalization_3
    h = PF.batch_normalization(h, (1, ),
                               0.5,
                               0.01,
                               not test,
                               name='BatchNormalization_3')
    # BinarySigmoid_3
    h = F.binary_sigmoid(h)
    # BinaryConnectAffine_2 -> 10
    h = PF.binary_connect_affine(h, (10, ), name='BinaryConnectAffine_2')
    # BatchNormalization_4
    h = PF.batch_normalization(h, (1, ),
                               0.5,
                               0.01,
                               not test,
                               name='BatchNormalization_4')
    # Softmax
    h = F.softmax(h)
    # CategoricalCrossEntropy -> 1
    # h = F.categorical_cross_entropy(h, y)
    return h
示例#3
0
 def res_unit(x, scope):
     C = x.shape[1]
     with nn.parameter_scope(scope):
         with nn.parameter_scope('conv1'):
             h = F.elu(bn(PF.binary_connect_convolution(
                 x, C / 2, (1, 1), with_bias=False)))
         with nn.parameter_scope('conv2'):
             h = F.elu(
                 bn(PF.binary_connect_convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
         with nn.parameter_scope('conv3'):
             h = bn(PF.binary_connect_convolution(
                 h, C, (1, 1), with_bias=False))
     return F.elu(x + h)
示例#4
0
 def res_unit(x, scope):
     C = x.shape[1]
     with nn.parameter_scope(scope):
         with nn.parameter_scope('conv1'):
             h = F.elu(bn(PF.binary_connect_convolution(
                 x, C / 2, (1, 1), with_bias=False)))
         with nn.parameter_scope('conv2'):
             h = F.elu(
                 bn(PF.binary_connect_convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
         with nn.parameter_scope('conv3'):
             h = bn(PF.binary_connect_convolution(
                 h, C, (1, 1), with_bias=False))
     return F.elu(x + h)
示例#5
0
def mnist_binary_connect_lenet_prediction(image, test=False):
    """
    Construct LeNet for MNIST (BinaryNet version).
    """
    with nn.parameter_scope("conv1"):
        c1 = PF.binary_connect_convolution(image, 16, (5, 5))
        c1 = PF.batch_normalization(c1, batch_stat=not test)
        c1 = F.elu(F.average_pooling(c1, (2, 2)))
    with nn.parameter_scope("conv2"):
        c2 = PF.binary_connect_convolution(c1, 16, (5, 5))
        c2 = PF.batch_normalization(c2, batch_stat=not test)
        c2 = F.elu(F.average_pooling(c2, (2, 2)))
    with nn.parameter_scope("fc3"):
        c3 = PF.binary_connect_affine(c2, 50)
        c3 = PF.batch_normalization(c3, batch_stat=not test)
        c3 = F.elu(c3)
    with nn.parameter_scope("fc4"):
        c4 = PF.binary_connect_affine(c3, 10)
        c4 = PF.batch_normalization(c4, batch_stat=not test)
    return c4
示例#6
0
def mnist_binary_connect_lenet_prediction(image, test=False):
    """
    Construct LeNet for MNIST (BinaryNet version).
    """
    with nn.parameter_scope("conv1"):
        c1 = PF.binary_connect_convolution(image, 16, (5, 5))
        c1 = PF.batch_normalization(c1, batch_stat=not test)
        c1 = F.elu(F.average_pooling(c1, (2, 2)))
    with nn.parameter_scope("conv2"):
        c2 = PF.binary_connect_convolution(c1, 16, (5, 5))
        c2 = PF.batch_normalization(c2, batch_stat=not test)
        c2 = F.elu(F.average_pooling(c2, (2, 2)))
    with nn.parameter_scope("fc3"):
        c3 = PF.binary_connect_affine(c2, 50)
        c3 = PF.batch_normalization(c3, batch_stat=not test)
        c3 = F.elu(c3)
    with nn.parameter_scope("fc4"):
        c4 = PF.binary_connect_affine(c3, 10)
        c4 = PF.batch_normalization(c4, batch_stat=not test)
    return c4
示例#7
0
def mnist_binary_connect_resnet_prediction(image, test=False):
    """
    Construct ResNet for MNIST (BinaryNet version).
    """
    def bn(x):
        return PF.batch_normalization(x, batch_stat=not test)

    def res_unit(x, scope):
        C = x.shape[1]
        with nn.parameter_scope(scope):
            with nn.parameter_scope('conv1'):
                h = F.elu(
                    bn(
                        PF.binary_connect_convolution(x,
                                                      C / 2, (1, 1),
                                                      with_bias=False)))
            with nn.parameter_scope('conv2'):
                h = F.elu(
                    bn(
                        PF.binary_connect_convolution(h,
                                                      C / 2, (3, 3),
                                                      pad=(1, 1),
                                                      with_bias=False)))
            with nn.parameter_scope('conv3'):
                h = bn(
                    PF.binary_connect_convolution(h,
                                                  C, (1, 1),
                                                  with_bias=False))
        return F.elu(x + h)

    # Conv1 --> 64 x 32 x 32
    with nn.parameter_scope("conv1"):
        c1 = F.elu(
            bn(
                PF.binary_connect_convolution(image,
                                              64, (3, 3),
                                              pad=(3, 3),
                                              with_bias=False)))
    # Conv2 --> 64 x 16 x 16
    c2 = F.max_pooling(res_unit(c1, "conv2"), (2, 2))
    # Conv3 --> 64 x 8 x 8
    c3 = F.max_pooling(res_unit(c2, "conv3"), (2, 2))
    # Conv4 --> 64 x 8 x 8
    c4 = res_unit(c3, "conv4")
    # Conv5 --> 64 x 4 x 4
    c5 = F.max_pooling(res_unit(c4, "conv5"), (2, 2))
    # Conv5 --> 64 x 4 x 4
    c6 = res_unit(c5, "conv6")
    pl = F.average_pooling(c6, (4, 4))
    with nn.parameter_scope("classifier"):
        y = bn(PF.binary_connect_affine(pl, 10))
    return y
示例#8
0
def mnist_binary_connect_resnet_prediction(image, test=False):
    """
    Construct ResNet for MNIST (BinaryNet version).
    """
    def bn(x):
        return PF.batch_normalization(x, batch_stat=not test)

    def res_unit(x, scope):
        C = x.shape[1]
        with nn.parameter_scope(scope):
            with nn.parameter_scope('conv1'):
                h = F.elu(bn(PF.binary_connect_convolution(
                    x, C / 2, (1, 1), with_bias=False)))
            with nn.parameter_scope('conv2'):
                h = F.elu(
                    bn(PF.binary_connect_convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
            with nn.parameter_scope('conv3'):
                h = bn(PF.binary_connect_convolution(
                    h, C, (1, 1), with_bias=False))
        return F.elu(x + h)
    # Conv1 --> 64 x 32 x 32
    with nn.parameter_scope("conv1"):
        c1 = F.elu(
            bn(PF.binary_connect_convolution(image, 64, (3, 3), pad=(3, 3), with_bias=False)))
    # Conv2 --> 64 x 16 x 16
    c2 = F.max_pooling(res_unit(c1, "conv2"), (2, 2))
    # Conv3 --> 64 x 8 x 8
    c3 = F.max_pooling(res_unit(c2, "conv3"), (2, 2))
    # Conv4 --> 64 x 8 x 8
    c4 = res_unit(c3, "conv4")
    # Conv5 --> 64 x 4 x 4
    c5 = F.max_pooling(res_unit(c4, "conv5"), (2, 2))
    # Conv5 --> 64 x 4 x 4
    c6 = res_unit(c5, "conv6")
    pl = F.average_pooling(c6, (4, 4))
    with nn.parameter_scope("classifier"):
        y = bn(PF.binary_connect_affine(pl, 10))
    return y
示例#9
0
def cifar10_binary_net_resnet23_prediction(image, maps=64,
                                           test=False):
    """
    Construct BianryNet using resnet23. Binary Net binaries weights and activations.


    References: 
        Courbariaux Matthieu, Bengio Yoshua, David Jean-Pierre, 
        "BinaryConnect: Training Deep Neural Networks with binary weights during propagations", 
        Advances in Neural Information Processing Systems 28 (NIPS 2015)

    """
    # Residual Unit
    def res_unit(x, scope_name, rng, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> BinaryTanh
            with nn.parameter_scope("conv1"):
                h = PF.binary_connect_convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.binary_tanh(h)
            # Conv -> BN -> BinaryTanh
            with nn.parameter_scope("conv2"):
                h = PF.binary_connect_convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.binary_tanh(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.binary_connect_convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> BinaryTanh
            h = F.binary_tanh(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))

        return h

    ncls = 10

    # Conv -> BN -> Binary_tanh
    with nn.parameter_scope("conv1"):
        # Preprocess
        image /= 255.0
        if not test:
            image = F.image_augmentation(image, contrast=1.0,
                                         angle=0.25,
                                         flip_lr=True)
            image.need_grad = False
        h = PF.binary_connect_convolution(image, maps, kernel=(3, 3), pad=(1, 1),
                                          with_bias=False)
        h = PF.batch_normalization(h, batch_stat=not test)
        h = F.binary_tanh(h)

    h = res_unit(h, "conv2", False)    # -> 32x32
    h = res_unit(h, "conv3", True)     # -> 16x16
    h = res_unit(h, "conv4", False)    # -> 16x16
    h = res_unit(h, "conv5", True)     # -> 8x8
    h = res_unit(h, "conv6", False)    # -> 8x8
    h = res_unit(h, "conv7", True)     # -> 4x4
    h = res_unit(h, "conv8", False)    # -> 4x4
    h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1
    pred = PF.binary_connect_affine(h, ncls)

    return pred
示例#10
0
def cifar10_binary_net_resnet23_prediction(image, maps=64, test=False):
    """
    Construct BianryNet using resnet23.
    """

    # Residual Unit
    def res_unit(x, scope_name, dn=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> BinaryTanh
            with nn.parameter_scope("conv1"):
                h = PF.binary_connect_convolution(x,
                                                  C // 2,
                                                  kernel=(1, 1),
                                                  pad=(0, 0),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.binary_tanh(h)
            # Conv -> BN -> BinaryTanh
            with nn.parameter_scope("conv2"):
                h = PF.binary_connect_convolution(h,
                                                  C // 2,
                                                  kernel=(3, 3),
                                                  pad=(1, 1),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.binary_tanh(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.binary_connect_convolution(h,
                                                  C,
                                                  kernel=(1, 1),
                                                  pad=(0, 0),
                                                  with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> BinaryTanh
            h = F.binary_tanh(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))

        return h

    ncls = 10

    # Conv -> BN -> Binary_tanh
    with nn.parameter_scope("conv1"):
        # Preprocess
        image /= 255.0
        if not test:
            image = F.image_augmentation(image,
                                         contrast=1.0,
                                         angle=0.25,
                                         flip_lr=True)
            image.need_grad = False
        h = PF.binary_connect_convolution(image,
                                          maps,
                                          kernel=(3, 3),
                                          pad=(1, 1),
                                          with_bias=False)
        h = PF.batch_normalization(h, batch_stat=not test)
        h = F.binary_tanh(h)

    h = res_unit(h, "conv2", False)  # -> 32x32
    h = res_unit(h, "conv3", True)  # -> 16x16
    h = res_unit(h, "conv4", False)  # -> 16x16
    h = res_unit(h, "conv5", True)  # -> 8x8
    h = res_unit(h, "conv6", False)  # -> 8x8
    h = res_unit(h, "conv7", True)  # -> 4x4
    h = res_unit(h, "conv8", False)  # -> 4x4
    h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1
    pred = PF.binary_connect_affine(h, ncls)

    return pred