示例#1
0
def test_implicates_implicants_negation_rule_example():
    """These failed an old version of the previous test. See issue #3."""
    sentence = Or({And({~Var(1), Var(2)}), And({~Var(3), Var(1)})})
    assert (sentence.negate().implicants().negate().children >=
            sentence.implicates().children)
    assert (sentence.negate().implicates().negate().children <=
            sentence.implicants().children)
示例#2
0
def encode_circuit_search(original_theory, num_gates, models=[]):

    ########
    # Vars #
    ########

    # Inputs to the circuit are the variables of the input theory
    inputs = [Var(v) for v in original_theory.vars()]
    if models:
        input_clones = clone_varset(models, inputs, inputs)
    else:
        input_clones = {}

    # Gates are either & | or ~
    gates = []
    gate_modalities = {}
    for i in range(num_gates):
        gates.append(Var(Gate(i)))
        gate_modalities[gates[-1]] = {}
        for m in ['and', 'or', 'not']:
            gate_modalities[gates[-1]][m] = Var(GateType(gates[-1], m))

    if models:
        gate_clones = clone_varset(models, inputs, gates)
    else:
        gate_clones = {}

    # Single (arbitrary) gate is the circuit output
    output = gates[0]

    # Connections between inputs/gates to gates, and transitivity
    connections = {}
    unconnections = {}
    for src in inputs + gates[1:]:
        connections[src] = {}
        for dst in gates:
            if src != dst:
                connections[src][dst] = Var(Connection(src, dst))
                if dst not in unconnections:
                    unconnections[dst] = {}
                unconnections[dst][src] = connections[src][dst]
    C = connections # convenience

    orders = {}
    for src in gates:
        orders[src] = {}
        for dst in gates:
            orders[src][dst] = Var(Order(src,dst))



    ###############
    # Constraints #
    ###############

    ''' add decorators for simplifying adding constraints (i.e. a conjunct)'''
    conjuncts = []

    # Orderings (to forbid cycles in the circuit)
    for g1 in gates:
        # Connection implies orders
        for src in connections:
            for dst in connections[src]:
                if isinstance(src.name, Gate) and isinstance(dst.name, Gate):
                    conjuncts.append(~connections[src][dst] | orders[src][dst])
        # Can't order before yourself
        conjuncts.append(~orders[g1][g1])
        # Transitive closure
        for g2 in gates:
            for g3 in gates:
                conjuncts.append(~orders[g1][g2] | ~orders[g2][g3] | orders[g1][g3])

    if FORCE_TREE:
        # At max one outgoing connection on a gate
        for src in gates[1:]:
            for dst1 in connections[src]:
                for dst2 in connections[src]:
                    if dst1 != dst2:
                        conjuncts.append(~connections[src][dst1] | ~connections[src][dst2])

    # Every gate has at least one input
    for dst in unconnections:
        conjuncts.append(Or(unconnections[dst].values()))

    # Every gate has at most two inputs and negation gates have at most one
    for j in gates:
        for i1 in inputs+gates[1:]:
            for i2 in inputs+gates[1:]:
                if not unique([j,i1,i2]):
                    continue
                conjuncts.append(~gate_modalities[j]['not'] | ~C[i1][j] | ~C[i2][j])
                for i3 in inputs+gates[1:]:
                    if not unique([j,i1,i2,i3]):
                        continue
                    conjuncts.append(~C[i1][j] | ~C[i2][j] | ~C[i3][j])

    # Every gate has exactly one modality
    for g in gates:
        # At least one
        conjuncts.append(Or(gate_modalities[g].values()))

        # At most one
        for m1 in ['and', 'or', 'not']:
            remaining = set(['and', 'or', 'not']) - set([m1])
            conjuncts.append(Or([~gate_modalities[g][m2] for m2 in remaining]))

    # Re-usable theories
    notneg_cache = {}
    def notneg(src, dst, cloned_src=None):
        if not cloned_src:
            cloned_src = src
        if (cloned_src,dst) not in notneg_cache:
            notneg_cache[(cloned_src,dst)] = ~C[src][dst] | cloned_src
        return notneg_cache[(cloned_src,dst)]

    notpos_cache = {}
    def notpos(src, dst, cloned_src=None):
        if not cloned_src:
            cloned_src = src
        if (cloned_src,dst) not in notpos_cache:
            notpos_cache[(cloned_src,dst)] = ~C[src][dst] | ~cloned_src
        return notpos_cache[(cloned_src,dst)]

    # Implement the gates
    for g in gates:

        ins = [i for i in inputs+gates[1:] if i != g]

        conjuncts.append(~gate_modalities[g]['and'] | iff(g, And([notneg(src,g) for src in ins])))

        t = Or([notpos(src,g).negate() for src in ins])
        conjuncts.append(~gate_modalities[g]['or'] | iff(g, t))

        conjuncts.append(~gate_modalities[g]['not'] | iff(g, t.negate()))

        for m in models:
            bitvec = model_to_bitvec(m, inputs)
            orig_mapping = {**{input_clones[bitvec][i]: i for i in inputs if i != g},
                            **{gate_clones[bitvec][i]: i for i in gates[1:] if i != g}}
            ins = orig_mapping.keys()

            conjuncts.append(~gate_modalities[g]['and'] | iff(gate_clones[bitvec][g],
                     And([notneg(orig_mapping[src],g,src) for src in ins])))

            t = Or([notpos(orig_mapping[src],g,src).negate() for src in ins])
            conjuncts.append(~gate_modalities[g]['or'] | iff(gate_clones[bitvec][g], t))

            conjuncts.append(~gate_modalities[g]['not'] | iff(gate_clones[bitvec][g], t.negate()))


    # Finally, lock in the models
    if models:
        for m in models:
            bitvec = model_to_bitvec(m, inputs)
            for var in m:
                if m[var]:
                    conjuncts.append(input_clones[bitvec][Var(var)])
                else:
                    conjuncts.append(~input_clones[bitvec][Var(var)])
            if original_theory.satisfied_by(m):
                conjuncts.append(gate_clones[bitvec][output])
            else:
                conjuncts.append(~gate_clones[bitvec][output])
    else:
        for model in all_models(original_theory.vars()):

            t = false # negating the conjunction because of the implication: flips the signs
            for var,val in model.items():
                if val:
                    t |= ~Var(var)
                else:
                    t |= Var(var)
            if original_theory.satisfied_by(model):
                t |= output
            else:
                t |= ~output
            conjuncts.append(t)


    versions = {}
    example = {}
    for c in conjuncts:
        cn = c.simplify().to_CNF()
        stats = "(%d / %d / %d) > (%d / %d / %d)" % (c.simplify().size(), c.simplify().height(), len(c.simplify().vars()),
                                                     cn.size(), cn.height(), len(cn.vars()))
        example[stats] = str(c.simplify())
        versions[stats] = versions.get(stats, 0) + 1
    print("Conjunct stats:")
    for k in versions:
        print("\n - (%d) %s: %s" % (versions[k], k, example[k]))

    T = And(conjuncts)
    return T.simplify(), inputs, gates, output, connections, unconnections, gate_modalities