示例#1
0
def test_jacobian_pimplicit_vs_pdense():
    for get_task in linear_tasks + nonlinear_tasks:
        loader, lc, parameters, model, function, n_output = get_task()
        generator = Jacobian(layer_collection=lc,
                             model=model,
                             function=function,
                             n_output=n_output)
        PMat_implicit = PMatImplicit(generator=generator, examples=loader)
        PMat_dense = PMatDense(generator=generator, examples=loader)
        dw = random_pvector(lc, device=device)

        # Test trace
        check_ratio(PMat_dense.trace(), PMat_implicit.trace())

        # Test mv
        if ('BatchNorm1dLayer'
                in [l.__class__.__name__
                    for l in lc.layers.values()] or 'BatchNorm2dLayer'
                in [l.__class__.__name__ for l in lc.layers.values()]):
            with pytest.raises(NotImplementedError):
                PMat_implicit.mv(dw)
        else:
            check_tensors(
                PMat_dense.mv(dw).get_flat_representation(),
                PMat_implicit.mv(dw).get_flat_representation())

        # Test vTMv
        if ('BatchNorm1dLayer'
                in [l.__class__.__name__
                    for l in lc.layers.values()] or 'BatchNorm2dLayer'
                in [l.__class__.__name__ for l in lc.layers.values()]):
            with pytest.raises(NotImplementedError):
                PMat_implicit.vTMv(dw)
        else:
            check_ratio(PMat_dense.vTMv(dw), PMat_implicit.vTMv(dw))
示例#2
0
def test_jacobian_pdense_vs_pushforward():
    # NB: sometimes the test with centering=True do not pass,
    # which is probably due to the way we compute centering
    # for PMatDense: E[x^2] - (Ex)^2 is notoriously not numerically stable
    for get_task in linear_tasks + nonlinear_tasks:
        for centering in [True, False]:
            loader, lc, parameters, model, function, n_output = get_task()
            model.train()
            generator = Jacobian(layer_collection=lc,
                                 model=model,
                                 loader=loader,
                                 function=function,
                                 n_output=n_output,
                                 centering=centering)
            push_forward = PushForwardDense(generator)
            pull_back = PullBackDense(generator, data=push_forward.data)
            PMat_dense = PMatDense(generator)
            dw = random_pvector(lc, device=device)
            n = len(loader.sampler)

            # Test get_dense_tensor
            jacobian = push_forward.get_dense_tensor()
            sj = jacobian.size()
            PMat_computed = torch.mm(jacobian.view(-1, sj[2]).t(),
                                     jacobian.view(-1, sj[2])) / n
            check_tensors(PMat_computed,
                          PMat_dense.get_dense_tensor())

            # Test vTMv
            vTMv_PMat = PMat_dense.vTMv(dw)
            Jv_pushforward = push_forward.mv(dw)
            Jv_pushforward_flat = Jv_pushforward.get_flat_representation()
            vTMv_pushforward = torch.dot(Jv_pushforward_flat.view(-1),
                                         Jv_pushforward_flat.view(-1)) / n
            check_ratio(vTMv_pushforward, vTMv_PMat)

            # Test Mv
            Mv_PMat = PMat_dense.mv(dw)
            Mv_pf_pb = pull_back.mv(Jv_pushforward)
            check_tensors(Mv_pf_pb.get_flat_representation() / n,
                          Mv_PMat.get_flat_representation())