def uniform_network(cls, size, neuron_model=default_neuron, neuron_param=None, syn_model=default_synapse, syn_param=None): ''' Generate a network containing only one type of neurons. Parameters ---------- size : int Number of neurons in the network. neuron_model : string, optional (default: 'aief_cond_alpha') Name of the NEST neural model to use when simulating the activity. neuron_param : dict, optional (default: {}) Dictionary containing the neural parameters; the default value will make NEST use the default parameters of the model. syn_model : string, optional (default: 'static_synapse') NEST synaptic model to use when simulating the activity. syn_param : dict, optional (default: {}) Dictionary containing the synaptic parameters; the default value will make NEST use the default parameters of the model. Returns ------- net : :class:`~nngt.Network` or subclass Uniform network of disconnected neurons. ''' if neuron_param is None: neuron_param = {} if syn_param is None: syn_param = {} pop = NeuralPop.uniform_population(size, None, neuron_model, neuron_param, syn_model, syn_param) net = cls(population=pop) return net
def ei_network(cls, size, ei_ratio=0.2, en_model=default_neuron, en_param=None, es_model=default_synapse, es_param=None, in_model=default_neuron, in_param=None, is_model=default_synapse, is_param=None): ''' Generate a network containing a population of two neural groups: inhibitory and excitatory neurons. Parameters ---------- size : int Number of neurons in the network. ei_ratio : double, optional (default: 0.2) Ratio of inhibitory neurons: :math:`\\frac{N_i}{N_e+N_i}`. en_model : string, optional (default: 'aeif_cond_alpha') Nest model for the excitatory neuron. en_param : dict, optional (default: {}) Dictionary of parameters for the the excitatory neuron. es_model : string, optional (default: 'static_synapse') NEST model for the excitatory synapse. es_param : dict, optional (default: {}) Dictionary containing the excitatory synaptic parameters. in_model : string, optional (default: 'aeif_cond_alpha') Nest model for the inhibitory neuron. in_param : dict, optional (default: {}) Dictionary of parameters for the the inhibitory neuron. is_model : string, optional (default: 'static_synapse') NEST model for the inhibitory synapse. is_param : dict, optional (default: {}) Dictionary containing the inhibitory synaptic parameters. Returns ------- net : :class:`~nngt.Network` or subclass Network of disconnected excitatory and inhibitory neurons. ''' if en_param is None: en_param = {} if es_param is None: es_param = {} if in_param is None: in_param = {} if is_param is None: is_param = {} pop = NeuralPop.exc_and_inhib(size, ei_ratio, None, en_model, en_param, es_model, es_param, in_model, in_param, is_model, is_param) net = cls(population=pop) return net