示例#1
0
    def find_conv_bn_patterns(self, model, dummy_input):
        """
        Find all Conv-BN patterns, used for batch normalization folding

        Parameters
        ----------
        model : torch.nn.Module
            model to be analyzed.
        dummy_input : tupel of torch.tensor
            inputs to the model, used for generating the torchscript
        """
        if dummy_input is None:
            _logger.debug(
                "Model inputs are not given, batch normalization folding is disabled"
            )
            return

        graph = build_module_graph(model, dummy_input)
        for node_group in graph.nodes_py.nodes_op:
            if node_group.op_type in BN_FOLD_OP:
                successors = graph.find_successors(node_group.unique_name)
                successors = [graph.name_to_node[x] for x in successors]
                for successor in successors:
                    if successor.op_type == 'BatchNorm2d':
                        self.conv_bn_patterns[node_group.name] = successor.name
示例#2
0
 def __init__(self, model, dummy_input, masks_file, map_location=None,
              batch_dim=0, confidence=8):
     assert confidence > 1
     # The auto inference will change the values of the parameters in the model
     # so we need make a copy before the mask inference
     self.ori_state_dict = copy.deepcopy(model.state_dict())
     self.bound_model = model
     self.inferred_masks = dict()  # key: module_name, value: ModuleMasks
     self.batch_dim = batch_dim
     self.dummy_input, self.device = self._random_model_input(dummy_input, confidence, batch_dim)
     self.torch_graph = build_module_graph(model, self.dummy_input)
     # dict object to save the auto inferences objects of the submodules
     self.auto_inferences = {}
     # the index dict to find the corresponding torch._C.Value object
     # according to the debug name
     # we need the dummy_input to infer the mask automaticlly, so we save
     # the indexes from tensor's debugname to the torch._C.Value object.
     self.debugname_to_value = {}
     # load the mask tensor to the same device with the dummy_input
     # self.masks save the mask tensors pruned by the user and the infered
     # masks of the others modules
     if isinstance(masks_file, (str, Path)) and Path(masks_file).exists():
         self.masks = torch.load(
             masks_file, map_location if map_location is not None else str(self.device))
     elif isinstance(masks_file, dict):
         self.masks = masks_file
     else:
         raise Exception('Please provide the mask or the path of the mask file')
     self.constant = {}
     # self.internal_result save the internal output of the submodules
     self.internal_result = {}
    def test_build_module_graph(self):
        big_model = BigModel()
        g = build_module_graph(big_model, torch.randn(2, 1, 28, 28))
        print(g.name_to_node.keys())
        leaf_modules = set([
            'backbone1.conv1', 'backbone2.bn1', 'backbone2.bn2',
            'backbone2.conv1', 'backbone2.conv2', 'backbone2.fc1',
            'backbone2.fc2', 'fc3'
        ])

        assert set(g.leaf_modules) == leaf_modules
        assert not leaf_modules - set(g.name_to_node.keys())
        assert g.find_successors('backbone2.conv1') == ['backbone2.bn1']
        assert g.find_successors('backbone2.conv2') == ['backbone2.bn2']
        assert g.find_predecessors('backbone2.bn1') == ['backbone2.conv1']
        assert g.find_predecessors('backbone2.bn2') == ['backbone2.conv2']
示例#4
0
    def __init__(self, model, dummy_input, masks_file, map_location=None,
                 batch_dim=0, confidence=8):
        """
        Parameters
        ----------
        model : pytorch model
            The model user wants to speed up
        dummy_input : pytorch tensor, tuple of tensor, list of tensor
            Note: The first dimension of the dummy_input should be the batchsize.
            The dummy input for ```jit.trace```, users should put it on the right
            device.
        masks_file : str
            The path of user provided mask file
        map_location : str
            the device on which masks are placed, same to map_location in ```torch.load```
        batch_dim : int
            the index of batch dimension in the dummy_input
        confidence: the confidence coefficient of the sparsity inference. This value is
            actually used as the batchsize of the dummy_input.
        """
        assert confidence > 1
        # The auto inference will change the values of the parameters in the model
        # so we need make a copy before the mask inference
        self.ori_state_dict = copy.deepcopy(model.state_dict())
        self.bound_model = model
        self.inferred_masks = dict()  # key: module_name, value: ModuleMasks
        self.batch_dim = batch_dim
        self.dummy_input, self.device = self._random_model_input(dummy_input, confidence, batch_dim)
        self.torch_graph = build_module_graph(model, self.dummy_input)
        # dict object to save the auto inferences objects of the submodules
        self.auto_inferences = {}
        # the index dict to find the corresponding torch._C.Value object
        # according to the debug name
        # we need the dummy_input to infer the mask automaticlly, so we save
        # the indexes from tensor's debugname to the torch._C.Value object.
        self.debugname_to_value = {}
        # load the mask tensor to the same device with the dummy_input
        # self.masks save the mask tensors pruned by the user and the infered
        # masks of the others modules
        self.masks = torch.load(
            masks_file, map_location if map_location is not None else str(self.device))

        self.constant = {}
        # self.internal_result save the internal output of the submodules
        self.internal_result = {}
示例#5
0
文件: compressor.py 项目: ichejun/nni
    def __init__(self, model, dummy_input, masks_file, map_location=None):
        """
        Parameters
        ----------
        model : pytorch model
            The model user wants to speed up
        dummy_input : pytorch tensor
            The dummy input for ```jit.trace```, users should put it on right device before pass in
        masks_file : str
            The path of user provided mask file
        map_location : str
            the device on which masks are placed, same to map_location in ```torch.load```
        """
        from nni.common.graph_utils import build_module_graph

        self.bound_model = model
        self.masks = torch.load(masks_file, map_location)
        self.inferred_masks = dict()  # key: module_name, value: ModuleMasks
        self.dummy_input = dummy_input
        self.torch_graph = build_module_graph(model, dummy_input)