示例#1
0
 def test_layer_choice(self):
     for i in range(2):
         for j in range(2):
             if j == 0:
                 # test number
                 layer_choice = LayerChoice([nn.Conv2d(3, 3, 3), nn.Conv2d(3, 5, 3), nn.Conv2d(3, 6, 3)])
             else:
                 # test ordered dict
                 layer_choice = LayerChoice(OrderedDict([
                     ("conv1", nn.Conv2d(3, 3, 3)),
                     ("conv2", nn.Conv2d(3, 5, 3)),
                     ("conv3", nn.Conv2d(3, 6, 3))
                 ]))
             if i == 0:
                 # test modify
                 self.assertEqual(len(layer_choice.choices), 3)
                 layer_choice[1] = nn.Conv2d(3, 4, 3)
                 self.assertEqual(layer_choice[1].out_channels, 4)
                 self.assertEqual(len(layer_choice[0:2]), 2)
                 if j > 0:
                     layer_choice["conv3"] = nn.Conv2d(3, 7, 3)
                     self.assertEqual(layer_choice[-1].out_channels, 7)
             if i == 1:
                 # test delete
                 del layer_choice[1]
                 self.assertEqual(len(layer_choice), 2)
                 self.assertEqual(len(list(layer_choice)), 2)
                 self.assertEqual(layer_choice.names, ["conv1", "conv3"] if j > 0 else ["0", "2"])
                 if j > 0:
                     del layer_choice["conv1"]
                     self.assertEqual(len(layer_choice), 1)
示例#2
0
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = LayerChoice([nn.Conv2d(3, 6, 3, padding=1), nn.Conv2d(3, 6, 5, padding=2)])
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = LayerChoice([nn.Conv2d(6, 16, 3, padding=1), nn.Conv2d(6, 16, 5, padding=2)])
        self.conv3 = nn.Conv2d(16, 16, 1)

        self.skipconnect = InputChoice(n_candidates=1)
        self.bn = nn.BatchNorm2d(16)

        self.gap = nn.AdaptiveAvgPool2d(4)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def __init__(self, test_case):
        super().__init__()
        self.test_case = test_case
        self.conv1 = LayerChoice(
            [nn.Conv2d(3, 6, 3, padding=1),
             nn.Conv2d(3, 6, 5, padding=2)])
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = LayerChoice(
            [nn.Conv2d(6, 16, 3, padding=1),
             nn.Conv2d(6, 16, 5, padding=2)],
            return_mask=True)
        self.conv3 = nn.Conv2d(16, 16, 1)
        self.bn = nn.BatchNorm2d(16)

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(16, 10)
示例#4
0
文件: mnist.py 项目: JSong-Jia/nni-1
 def __init__(self, hidden_size):
     super(Net, self).__init__()
     # two options of conv1
     self.conv1 = LayerChoice([nn.Conv2d(1, 20, 5, 1),
                               nn.Conv2d(1, 20, 3, 1)],
                              key='first_conv')
     # two options of mid_conv
     self.mid_conv = LayerChoice([nn.Conv2d(20, 20, 3, 1, padding=1),
                                  nn.Conv2d(20, 20, 5, 1, padding=2)],
                                 key='mid_conv')
     self.conv2 = nn.Conv2d(20, 50, 5, 1)
     self.fc1 = nn.Linear(4*4*50, hidden_size)
     self.fc2 = nn.Linear(hidden_size, 10)
     # skip connection over mid_conv
     self.input_switch = InputChoice(n_candidates=2,
                                     n_chosen=1,
                                     key='skip')
示例#5
0
 def __init__(self, cell_name, prev_labels, channels):
     super().__init__(cell_name)
     self.input_choice = InputChoice(choose_from=prev_labels,
                                     n_chosen=1,
                                     return_mask=True,
                                     key=cell_name + "_input")
     self.op_choice = LayerChoice([
         nn.Conv2d(channels, channels, 3, padding=1),
         nn.Conv2d(channels, channels, 5, padding=2),
         nn.MaxPool2d(3, stride=1, padding=1),
         nn.AvgPool2d(3, stride=1, padding=1),
         nn.Identity()
     ],
                                  key=cell_name + "_op")
示例#6
0
    def __init__(self,
                 cell_id,
                 C_in,
                 C_out,
                 stride,
                 bn_affine=True,
                 bn_momentum=0.1,
                 bn_track_running_stats=True):
        super(NASBench201Cell, self).__init__()

        self.NUM_NODES = 4
        self.layers = nn.ModuleList()

        OPS = lambda layer_idx: OrderedDict(
            [("none", Zero(C_in, C_out, stride)),
             ("avg_pool_3x3",
              Pooling(C_in, C_out, stride if layer_idx == 0 else 1, bn_affine,
                      bn_momentum, bn_track_running_stats)),
             ("conv_3x3",
              ReLUConvBN(C_in, C_out, 3, stride if layer_idx == 0 else 1, 1, 1,
                         bn_affine, bn_momentum, bn_track_running_stats)),
             ("conv_1x1",
              ReLUConvBN(C_in, C_out, 1, stride if layer_idx == 0 else 1, 0, 1,
                         bn_affine, bn_momentum, bn_track_running_stats)),
             ("skip_connect", nn.Identity()
              if stride == 1 and C_in == C_out else FactorizedReduce(
                  C_in, C_out, stride if layer_idx == 0 else 1, bn_affine,
                  bn_momentum, bn_track_running_stats))])

        for i in range(self.NUM_NODES):
            node_ops = nn.ModuleList()
            for j in range(0, i):
                node_ops.append(
                    LayerChoice(OPS(j), key="%d_%d" % (j, i),
                                reduction="mean"))
            self.layers.append(node_ops)
        self.in_dim = C_in
        self.out_dim = C_out
        self.cell_id = cell_id
    def __init__(self):
        super(ToxicClassifierModel, self).__init__()
        self.BiGRU = nn.GRU(300,
                            hidden_size=LSTM_UNITS,
                            bidirectional=True,
                            num_layers=1)
        self.BiRNN = LayerChoice([
            nn.RNN(input_size=2 * LSTM_UNITS,
                   hidden_size=LSTM_UNITS,
                   bidirectional=True,
                   num_layers=1),
            nn.RNN(input_size=2 * LSTM_UNITS,
                   hidden_size=LSTM_UNITS,
                   bidirectional=True,
                   num_layers=2)
        ])
        self.hidden1 = nn.Linear(DENSE_HIDDEN_UNITS, DENSE_HIDDEN_UNITS)
        self.hidden2 = nn.Linear(DENSE_HIDDEN_UNITS, DENSE_HIDDEN_UNITS)
        self.hidden3 = nn.Linear(DENSE_HIDDEN_UNITS, 6)
        self.vectors = FastText()

        self.skipconnect1 = InputChoice(n_candidates=1)
        self.skipconnect2 = InputChoice(n_candidates=1)
示例#8
0
 def __init__(self, test_case):
     super().__init__()
     self.test_case = test_case
     self.conv1 = LayerChoice([MutableOp(3), MutableOp(5)])
     self.gap = nn.AdaptiveAvgPool2d(1)
     self.fc1 = nn.Linear(120, 10)