def __init__( self, task="cv", input_width=32, input_channel=3, n_output_node=10, algorithm_name="Bayesian", optimize_mode="maximize", path="model_path", verbose=True, beta=Constant.BETA, t_min=Constant.T_MIN, max_model_size=Constant.MAX_MODEL_SIZE, default_model_len=Constant.MODEL_LEN, default_model_width=Constant.MODEL_WIDTH, ): """ initilizer of the NetworkMorphismTuner. """ if not os.path.exists(path): os.makedirs(path) self.path = os.path.join(os.getcwd(), path) if task == "cv": self.generators = [CnnGenerator] elif task == "common": self.generators = [MlpGenerator] else: raise NotImplementedError( '{} task not supported in List ["cv","common"]') self.n_classes = n_output_node self.input_shape = (input_width, input_width, input_channel) self.t_min = t_min self.beta = beta self.algorithm_name = algorithm_name self.optimize_mode = OptimizeMode(optimize_mode) self.json = None self.total_data = {} self.verbose = verbose self.model_count = 0 self.bo = BayesianOptimizer(self, self.t_min, self.optimize_mode, self.beta) self.training_queue = [] self.descriptors = [] self.history = [] self.max_model_size = max_model_size self.default_model_len = default_model_len self.default_model_width = default_model_width self.search_space = dict()
class NetworkMorphismTuner(Tuner): """ NetworkMorphismTuner is a tuner which using network morphism techniques. Attributes ---------- n_classes : int The class number or output node number (default: ``10``) input_shape : tuple A tuple including: (input_width, input_width, input_channel) t_min : float The minimum temperature for simulated annealing. (default: ``Constant.T_MIN``) beta : float The beta in acquisition function. (default: ``Constant.BETA``) algorithm_name : str algorithm name used in the network morphism (default: ``"Bayesian"``) optimize_mode : str optimize mode "minimize" or "maximize" (default: ``"minimize"``) verbose : bool verbose to print the log (default: ``True``) bo : BayesianOptimizer The optimizer used in networkmorphsim tuner. max_model_size : int max model size to the graph (default: ``Constant.MAX_MODEL_SIZE``) default_model_len : int default model length (default: ``Constant.MODEL_LEN``) default_model_width : int default model width (default: ``Constant.MODEL_WIDTH``) search_space : dict """ def __init__( self, task="cv", input_width=32, input_channel=3, n_output_node=10, algorithm_name="Bayesian", optimize_mode="maximize", path="model_path", verbose=True, beta=Constant.BETA, t_min=Constant.T_MIN, max_model_size=Constant.MAX_MODEL_SIZE, default_model_len=Constant.MODEL_LEN, default_model_width=Constant.MODEL_WIDTH, ): """ initilizer of the NetworkMorphismTuner. """ if not os.path.exists(path): os.makedirs(path) self.path = os.path.join(os.getcwd(), path) if task == "cv": self.generators = [CnnGenerator] elif task == "common": self.generators = [MlpGenerator] else: raise NotImplementedError( '{} task not supported in List ["cv","common"]') self.n_classes = n_output_node self.input_shape = (input_width, input_width, input_channel) self.t_min = t_min self.beta = beta self.algorithm_name = algorithm_name self.optimize_mode = OptimizeMode(optimize_mode) self.json = None self.total_data = {} self.verbose = verbose self.model_count = 0 self.bo = BayesianOptimizer(self, self.t_min, self.optimize_mode, self.beta) self.training_queue = [] self.descriptors = [] self.history = [] self.max_model_size = max_model_size self.default_model_len = default_model_len self.default_model_width = default_model_width self.search_space = dict() def update_search_space(self, search_space): """ Update search space definition in tuner by search_space in neural architecture. """ self.search_space = search_space def generate_parameters(self, parameter_id, **kwargs): """ Returns a set of trial neural architecture, as a serializable object. Parameters ---------- parameter_id : int """ if not self.history: self.init_search() new_father_id = None generated_graph = None if not self.training_queue: new_father_id, generated_graph = self.generate() new_model_id = self.model_count self.model_count += 1 self.training_queue.append( (generated_graph, new_father_id, new_model_id)) self.descriptors.append(generated_graph.extract_descriptor()) graph, father_id, model_id = self.training_queue.pop(0) # from graph to json json_model_path = os.path.join(self.path, str(model_id) + ".json") json_out = graph_to_json(graph, json_model_path) self.total_data[parameter_id] = (json_out, father_id, model_id) return json_out def receive_trial_result(self, parameter_id, parameters, value, **kwargs): """ Record an observation of the objective function. Parameters ---------- parameter_id : int the id of a group of paramters that generated by nni manager. parameters : dict A group of parameters. value : dict/float if value is dict, it should have "default" key. """ reward = extract_scalar_reward(value) if parameter_id not in self.total_data: raise RuntimeError("Received parameter_id not in total_data.") (_, father_id, model_id) = self.total_data[parameter_id] graph = self.bo.searcher.load_model_by_id(model_id) # to use the value and graph self.add_model(reward, model_id) self.update(father_id, graph, reward, model_id) def init_search(self): """ Call the generators to generate the initial architectures for the search. """ if self.verbose: logger.info("Initializing search.") for generator in self.generators: graph = generator(self.n_classes, self.input_shape).generate( self.default_model_len, self.default_model_width) model_id = self.model_count self.model_count += 1 self.training_queue.append((graph, -1, model_id)) self.descriptors.append(graph.extract_descriptor()) if self.verbose: logger.info("Initialization finished.") def generate(self): """ Generate the next neural architecture. Returns ------- other_info : any object Anything to be saved in the training queue together with the architecture. generated_graph : Graph An instance of Graph. """ generated_graph, new_father_id = self.bo.generate(self.descriptors) if new_father_id is None: new_father_id = 0 generated_graph = self.generators[0](self.n_classes, self.input_shape).generate( self.default_model_len, self.default_model_width) return new_father_id, generated_graph def update(self, other_info, graph, metric_value, model_id): """ Update the controller with evaluation result of a neural architecture. Parameters ---------- other_info: any object In our case it is the father ID in the search tree. graph: Graph An instance of Graph. The trained neural architecture. metric_value: float The final evaluated metric value. model_id: int """ father_id = other_info self.bo.fit([graph.extract_descriptor()], [metric_value]) self.bo.add_child(father_id, model_id) def add_model(self, metric_value, model_id): """ Add model to the history, x_queue and y_queue Parameters ---------- metric_value : float graph : dict model_id : int Returns ------- model : dict """ if self.verbose: logger.info("Saving model.") # Update best_model text file ret = {"model_id": model_id, "metric_value": metric_value} self.history.append(ret) if model_id == self.get_best_model_id(): file = open(os.path.join(self.path, "best_model.txt"), "w") file.write("best model: " + str(model_id)) file.close() return ret def get_best_model_id(self): """ Get the best model_id from history using the metric value """ if self.optimize_mode is OptimizeMode.Maximize: return max(self.history, key=lambda x: x["metric_value"])["model_id"] return min(self.history, key=lambda x: x["metric_value"])["model_id"] def load_model_by_id(self, model_id): """ Get the model by model_id Parameters ---------- model_id : int model index Returns ------- load_model : Graph the model graph representation """ with open(os.path.join(self.path, str(model_id) + ".json")) as fin: json_str = fin.read().replace("\n", "") load_model = json_to_graph(json_str) return load_model def load_best_model(self): """ Get the best model by model id Returns ------- load_model : Graph the model graph representation """ return self.load_model_by_id(self.get_best_model_id()) def get_metric_value_by_id(self, model_id): """ Get the model metric valud by its model_id Parameters ---------- model_id : int model index Returns ------- float the model metric """ for item in self.history: if item["model_id"] == model_id: return item["metric_value"] return None def import_data(self, data): pass
class NetworkMorphismTuner(Tuner): """NetworkMorphismTuner is a tuner which using network morphism techniques.""" def __init__( self, task="cv", input_width=32, input_channel=3, n_output_node=10, algorithm_name="Bayesian", optimize_mode="maximize", path="model_path", verbose=True, beta=Constant.BETA, t_min=Constant.T_MIN, max_model_size=Constant.MAX_MODEL_SIZE, default_model_len=Constant.MODEL_LEN, default_model_width=Constant.MODEL_WIDTH, ): """ initilizer of the NetworkMorphismTuner. Keyword Arguments: task {str} -- [task mode, such as "cv","common" etc.] (default: {"cv"}) input_width {int} -- [input sample shape] (default: {32}) input_channel {int} -- [input sample shape] (default: {3}) n_output_node {int} -- [output node number] (default: {10}) algorithm_name {str} -- [algorithm name used in the network morphism] (default: {"Bayesian"}) optimize_mode {str} -- [optimize mode "minimize" or "maximize"] (default: {"minimize"}) path {str} -- [default mode path to save the model file] (default: {"model_path"}) verbose {bool} -- [verbose to print the log] (default: {True}) beta {float} -- [The beta in acquisition function. (refer to our paper)] (default: {Constant.BETA}) t_min {float} -- [The minimum temperature for simulated annealing.] (default: {Constant.T_MIN}) max_model_size {int} -- [max model size to the graph] (default: {Constant.MAX_MODEL_SIZE}) default_model_len {int} -- [default model length] (default: {Constant.MODEL_LEN}) default_model_width {int} -- [default model width] (default: {Constant.MODEL_WIDTH}) """ if not os.path.exists(path): os.makedirs(path) self.path = os.path.join(os.getcwd(), path) if task == "cv": self.generators = [CnnGenerator] elif task == "common": self.generators = [MlpGenerator] else: raise NotImplementedError( '{} task not supported in List ["cv","common"]') self.n_classes = n_output_node self.input_shape = (input_width, input_width, input_channel) self.t_min = t_min self.beta = beta self.algorithm_name = algorithm_name self.optimize_mode = OptimizeMode(optimize_mode) self.json = None self.total_data = {} self.verbose = verbose self.model_count = 0 self.bo = BayesianOptimizer(self, self.t_min, self.optimize_mode, self.beta) self.training_queue = [] # self.x_queue = [] # self.y_queue = [] self.descriptors = [] self.history = [] self.max_model_size = max_model_size self.default_model_len = default_model_len self.default_model_width = default_model_width self.search_space = dict() def update_search_space(self, search_space): """ Update search space definition in tuner by search_space in neural architecture. """ self.search_space = search_space def generate_parameters(self, parameter_id): """ Returns a set of trial neural architecture, as a serializable object. parameter_id : int """ if not self.history: self.init_search() new_father_id = None generated_graph = None if not self.training_queue: new_father_id, generated_graph = self.generate() new_model_id = self.model_count self.model_count += 1 self.training_queue.append( (generated_graph, new_father_id, new_model_id)) self.descriptors.append(generated_graph.extract_descriptor()) graph, father_id, model_id = self.training_queue.pop(0) # from graph to json json_model_path = os.path.join(self.path, str(model_id) + ".json") json_out = graph_to_json(graph, json_model_path) self.total_data[parameter_id] = (json_out, father_id, model_id) return json_out def receive_trial_result(self, parameter_id, parameters, value): """ Record an observation of the objective function. Arguments: parameter_id : int parameters : dict of parameters value: final metrics of the trial, including reward Raises: RuntimeError -- Received parameter_id not in total_data. """ reward = self.extract_scalar_reward(value) if parameter_id not in self.total_data: raise RuntimeError("Received parameter_id not in total_data.") (_, father_id, model_id) = self.total_data[parameter_id] graph = self.bo.searcher.load_model_by_id(model_id) # to use the value and graph self.add_model(reward, model_id) self.update(father_id, graph, reward, model_id) def init_search(self): """Call the generators to generate the initial architectures for the search.""" if self.verbose: logger.info("Initializing search.") for generator in self.generators: graph = generator(self.n_classes, self.input_shape).generate( self.default_model_len, self.default_model_width) model_id = self.model_count self.model_count += 1 self.training_queue.append((graph, -1, model_id)) self.descriptors.append(graph.extract_descriptor()) if self.verbose: logger.info("Initialization finished.") def generate(self): """Generate the next neural architecture. Returns: other_info: Anything to be saved in the training queue together with the architecture. generated_graph: An instance of Graph. """ generated_graph, new_father_id = self.bo.generate(self.descriptors) if new_father_id is None: new_father_id = 0 generated_graph = self.generators[0](self.n_classes, self.input_shape).generate( self.default_model_len, self.default_model_width) return new_father_id, generated_graph def update(self, other_info, graph, metric_value, model_id): """ Update the controller with evaluation result of a neural architecture. Args: other_info: Anything. In our case it is the father ID in the search tree. graph: An instance of Graph. The trained neural architecture. metric_value: The final evaluated metric value. model_id: An integer. """ father_id = other_info self.bo.fit([graph.extract_descriptor()], [metric_value]) self.bo.add_child(father_id, model_id) def add_model(self, metric_value, model_id): """ Add model to the history, x_queue and y_queue Arguments: metric_value: int --metric_value graph: dict -- graph model_id: int -- model_id Returns: model dict """ if self.verbose: logger.info("Saving model.") # Update best_model text file ret = {"model_id": model_id, "metric_value": metric_value} self.history.append(ret) if model_id == self.get_best_model_id(): file = open(os.path.join(self.path, "best_model.txt"), "w") file.write("best model: " + str(model_id)) file.close() # descriptor = graph.extract_descriptor() # self.x_queue.append(descriptor) # self.y_queue.append(metric_value) return ret def get_best_model_id(self): """ Get the best model_id from history using the metric value Returns: int -- the best model_id """ if self.optimize_mode is OptimizeMode.Maximize: return max(self.history, key=lambda x: x["metric_value"])["model_id"] return min(self.history, key=lambda x: x["metric_value"])["model_id"] def load_model_by_id(self, model_id): """Get the model by model_id Arguments: model_id {int} -- model index Returns: Graph -- the model graph representation """ with open(os.path.join(self.path, str(model_id) + ".json")) as fin: json_str = fin.read().replace("\n", "") load_model = json_to_graph(json_str) return load_model def load_best_model(self): """ Get the best model by model id Returns: Graph -- the best model graph representation """ return self.load_model_by_id(self.get_best_model_id()) def get_metric_value_by_id(self, model_id): """ Get the model metric valud by its model_id Arguments: model_id {int} -- model index Returns: float -- the model metric """ for item in self.history: if item["model_id"] == model_id: return item["metric_value"] return None
def __init__( self, task="cv", input_width=32, input_channel=3, n_output_node=10, algorithm_name="Bayesian", optimize_mode="maximize", path="model_path", verbose=True, beta=Constant.BETA, t_min=Constant.T_MIN, max_model_size=Constant.MAX_MODEL_SIZE, default_model_len=Constant.MODEL_LEN, default_model_width=Constant.MODEL_WIDTH, ): """ initilizer of the NetworkMorphismTuner. Parameters ---------- task : str task mode, such as "cv","common" etc. (default: {"cv"}) input_width : int input sample shape (default: {32}) input_channel : int input sample shape (default: {3}) n_output_node : int output node number (default: {10}) algorithm_name : str algorithm name used in the network morphism (default: {"Bayesian"}) optimize_mode : str optimize mode "minimize" or "maximize" (default: {"minimize"}) path : str default mode path to save the model file (default: {"model_path"}) verbose : bool verbose to print the log (default: {True}) beta : float The beta in acquisition function. (default: {Constant.BETA}) t_min : float The minimum temperature for simulated annealing. (default: {Constant.T_MIN}) max_model_size : int max model size to the graph (default: {Constant.MAX_MODEL_SIZE}) default_model_len : int default model length (default: {Constant.MODEL_LEN}) default_model_width : int default model width (default: {Constant.MODEL_WIDTH}) """ if not os.path.exists(path): os.makedirs(path) self.path = os.path.join(os.getcwd(), path) if task == "cv": self.generators = [CnnGenerator] elif task == "common": self.generators = [MlpGenerator] else: raise NotImplementedError('{} task not supported in List ["cv","common"]') self.n_classes = n_output_node self.input_shape = (input_width, input_width, input_channel) self.t_min = t_min self.beta = beta self.algorithm_name = algorithm_name self.optimize_mode = OptimizeMode(optimize_mode) self.json = None self.total_data = {} self.verbose = verbose self.model_count = 0 self.bo = BayesianOptimizer(self, self.t_min, self.optimize_mode, self.beta) self.training_queue = [] self.descriptors = [] self.history = [] self.max_model_size = max_model_size self.default_model_len = default_model_len self.default_model_width = default_model_width self.search_space = dict()
class NetworkMorphismTuner(Tuner): """NetworkMorphismTuner is a tuner which using network morphism techniques.""" def __init__( self, task="cv", input_width=32, input_channel=3, n_output_node=10, algorithm_name="Bayesian", optimize_mode="maximize", path="model_path", verbose=True, beta=Constant.BETA, t_min=Constant.T_MIN, max_model_size=Constant.MAX_MODEL_SIZE, default_model_len=Constant.MODEL_LEN, default_model_width=Constant.MODEL_WIDTH, init_model_dir= Constant.FILE_DIR, ): """ initilizer of the NetworkMorphismTuner. Parameters ---------- task : str task mode, such as "cv","common" etc. (default: {"cv"}) input_width : int input sample shape (default: {32}) input_channel : int input sample shape (default: {3}) n_output_node : int output node number (default: {10}) algorithm_name : str algorithm name used in the network morphism (default: {"Bayesian"}) optimize_mode : str optimize mode "minimize" or "maximize" (default: {"minimize"}) path : str default mode path to save the model file (default: {"model_path"}) verbose : bool verbose to print the log (default: {True}) beta : float The beta in acquisition function. (default: {Constant.BETA}) t_min : float The minimum temperature for simulated annealing. (default: {Constant.T_MIN}) max_model_size : int max model size to the graph (default: {Constant.MAX_MODEL_SIZE}) default_model_len : int default model length (default: {Constant.MODEL_LEN}) default_model_width : int default model width (default: {Constant.MODEL_WIDTH}) init_model_list : list store the remorph models , every node initializes """ if not os.path.exists(path): os.makedirs(path) self.path = os.path.join(os.getcwd(), path) if task == "cv": self.generators = [CnnGenerator] elif task == "common": self.generators = [MlpGenerator] else: raise NotImplementedError('{} task not supported in List ["cv","common"]') self.n_classes = n_output_node self.input_shape = (input_width, input_width, input_channel) self.t_min = t_min self.beta = beta self.algorithm_name = algorithm_name self.optimize_mode = OptimizeMode(optimize_mode) self.json = None self.total_data = {} self.verbose = verbose self.model_count = 0 self.bo = BayesianOptimizer(self, self.t_min, self.optimize_mode, self.beta) self.training_queue = [] self.descriptors = [] self.history = [] self.max_model_size = max_model_size self.default_model_len = default_model_len self.default_model_width = default_model_width self.init_model_dir = [] if os.path.isdir(init_model_dir): for parent, dirnames,model_files in os.walk(init_model_dir): if model_files is not None: for model_file_name in model_files: model_file=os.path.join(parent, model_file_name) self.init_model_dir.append(model_file) else: self.init_model_dir.append(0) elif os.path.isfile(init_model_dir): self.init_model_dir.append(init_model_dir) else: self.init_model_dir.append(0) self.search_space = dict() def update_search_space(self, search_space): """ Update search space definition in tuner by search_space in neural architecture. """ self.search_space = search_space def set_descriptors(self, model_id, generated_graph): self.descriptors[model_id] = generated_graph.extract_descriptor() def fake_generate_parameters(self, parameter_id, **kwargs): """ Returns a initialized model. """ self.init_search() new_father_id = None generated_graph = None graph, father_id, model_id = self.training_queue.pop(0) # from graph to json json_model_path = os.path.join(self.path, str(model_id) + ".json") json_out = graph_to_json(graph, json_model_path) self.total_data[parameter_id] = (json_out, father_id, model_id) return json_out def generate_parameters(self, parameter_id, **kwargs): """ Returns a set of trial neural architecture, as a serializable object. Parameters ---------- parameter_id : int """ #If there is no history, slave node will use the fake model. if not self.history: print("If there is no history, generate_parameters should not be called!") exit(1) total_start=time.time() rate = 1 if (os.path.exists(os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/generate_time") and os.path.exists(os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/train_time")): with open(os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/generate_time", "r") as f: generate_time = float(f.read()) with open(os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/train_time", "r") as f: train_time = float(f.read()) if (generate_time != 0) and (train_time != 0): realrate = int(train_time / generate_time) if (realrate < 5) and (realrate > 1): rate = int(realrate) if (realrate <= 1): rate = 1 for i in range(rate): start=time.time() new_father_id = None generated_graph = None if not self.training_queue: new_father_id, generated_graph = self.generate() father_id,json_out,new_model_id = self.total_data[parameter_id] self.training_queue.append((generated_graph, new_father_id, new_model_id)) #self.descriptors.append(generated_graph.extract_descriptor()) else: print("training_queue should be an empty list.") exit(1) graph, father_id, model_id = self.training_queue.pop(0) # from graph to json json_model_path = os.path.join(self.path, str(model_id) + ".json") json_out = graph_to_json(graph, json_model_path) end=time.time() #self.total_data[parameter_id] = (json_out, father_id, model_id) json_and_id="json_out="+str(json_out)+"+father_id="+str(father_id)+"+parameter_id="+str(parameter_id)+"+history="+"True" lock.acquire() with open(os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/trials/" + str(nni.get_trial_id()) + "/output.log","a+") as f: f.write("single_generate=" + str(end - start)+"\n") with open(os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/graph.txt","a+") as f: f.write(json_and_id+"\n") lock.release() total_end=time.time() lock.acquire() with open(os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/trials/" + str(nni.get_trial_id()) + "/output.log","a+") as f: f.write("total_generate=" + str(total_end - total_start)+"\n") lock.release() totime = total_end - total_start if totime<0: totime = 0-totime with open (os.environ["HOME"] + "/mountdir/nni/experiments/" + str(nni.get_experiment_id()) + "/generate_time","w+") as f: gt = totime/rate f.write(str(gt)) #return json_out, father_id def receive_trial_result(self, parameter_id, parameters, value, **kwargs): """ Record an observation of the objective function. Parameters ---------- parameter_id : int parameters : dict value : dict/float if value is dict, it should have "default" key. """ reward = extract_scalar_reward(value) if parameter_id not in self.total_data: raise RuntimeError("Received parameter_id not in total_data.") (_, father_id, model_id) = self.total_data[parameter_id] graph = self.bo.searcher.load_model_by_id(model_id) # to use the value and graph self.add_model(reward, model_id) self.update(father_id, graph, reward, model_id) def init_search(self): """Call the generators to generate the initial architectures for the search.""" #if self.verbose: # logger.info("Initializing search.") import yaml trial_concurrency = os.popen('cat /etc/slurm-llnl/slurm.conf|grep NodeName|wc -l') trial_concurrency = int(trial_concurrency.read().strip()) if trial_concurrency > self.model_count: #判断当前训练的trial是否已超过第一轮trials #若没有超过第一轮trial,则判断当前的trial是否超过预生成的模型序列,若未超过,则正常设置num=count # if len(self.init_model_dir) > self.model_count: # num= self.model_count # else: # #若预生成的序列元素少于节点数(第一轮trial个数),则trial重复读取modle,采用取余方式 num = self.model_count % len(self.init_model_dir) else: num=0 for generator in self.generators: if os.path.isfile(self.init_model_dir[num]): graph = generator(self.n_classes, self.input_shape).pre_generate( self.init_model_dir[num] ) else: graph = generator(self.n_classes, self.input_shape).generate( self.default_model_len, self.default_model_width ) model_id = self.model_count self.model_count += 1 self.training_queue.append((graph, -1, model_id)) self.descriptors.append(graph.extract_descriptor()) # add acc fake if trial_concurrency > model_id: self.bo.fit([graph.extract_descriptor()], [0.05+model_id*0.01]) # self.bo.add_child(-1, model_id) self.history.append( {"model_id": model_id, "metric_value": 0.05+model_id*0.01}) if model_id == trial_concurrency-1 : if len(self.init_model_dir) >= trial_concurrency: for i in range(trial_concurrency): self.bo.add_child(i-1, i) else: #按正常的model id构建search tree for i in range(len(self.init_model_dir)): self.bo.add_child(i-1, i) #把尾部超出预生成模型路径的model id 取余后加至对应的father id上 for i in range(trial_concurrency-len(self.init_model_dir)): j=(model_id-trial_concurrency+len(self.init_model_dir)+i+1) % len(self.init_model_dir) self.bo.add_child(j ,i + len(self.init_model_dir)) ret_tree=self.bo.search_tree.get_dict(0) def generate(self): """Generate the next neural architecture. Returns ------- other_info: any object Anything to be saved in the training queue together with the architecture. generated_graph: Graph An instance of Graph. """ generated_graph, new_father_id = self.bo.generate(self.descriptors) if new_father_id is None: new_father_id = 0 generated_graph = self.generators[0]( self.n_classes, self.input_shape ).generate(self.default_model_len, self.default_model_width) return new_father_id, generated_graph def update(self, other_info, graph, metric_value, model_id): """ Update the controller with evaluation result of a neural architecture. Parameters ---------- other_info: any object In our case it is the father ID in the search tree. graph: Graph An instance of Graph. The trained neural architecture. metric_value: float The final evaluated metric value. model_id: int """ father_id = other_info t1 = time.time() self.bo.fit([graph.extract_descriptor()], [metric_value]) trial_concurrency = os.popen('cat /etc/slurm-llnl/slurm.conf|grep NodeName|wc -l') trial_concurrency = int(trial_concurrency.read().strip()) if model_id >= trial_concurrency : self.bo.add_child(father_id, model_id) ret_tree=self.bo.search_tree.get_dict(0) t2 = time.time() print("Update time = " + str(t2 - t1)) def add_model(self, metric_value, model_id): """ Add model to the history, x_queue and y_queue Parameters ---------- metric_value : float graph : dict model_id : int Returns ------- model : dict """ if self.verbose: logger.info("Saving model.") # Update best_model text file ret = {"model_id": model_id, "metric_value": metric_value} trial_concurrency = os.popen('cat /etc/slurm-llnl/slurm.conf|grep NodeName|wc -l') trial_concurrency = int(trial_concurrency.read().strip()) if model_id < trial_concurrency: for i in range(len(self.history)): if self.history[i]['model_id'] == model_id: self.history[i]['metric_value'] = metric_value break else: self.history.append(ret) if model_id == self.get_best_model_id(): file = open(os.path.join(self.path, "best_model.txt"), "w") file.write("best model: " + str(model_id)) file.close() return ret def get_best_model_id(self): """ Get the best model_id from history using the metric value """ if self.optimize_mode is OptimizeMode.Maximize: return max(self.history, key=lambda x: x["metric_value"])["model_id"] return min(self.history, key=lambda x: x["metric_value"])["model_id"] def load_model_by_id(self, model_id): """Get the model by model_id Parameters ---------- model_id : int model index Returns ------- load_model : Graph the model graph representation """ with open(os.path.join(self.path, str(model_id) + ".json")) as fin: json_str = fin.read().replace("\n", "") load_model = json_to_graph(json_str) return load_model def load_best_model(self): """ Get the best model by model id Returns ------- load_model : Graph the model graph representation """ return self.load_model_by_id(self.get_best_model_id()) def get_metric_value_by_id(self, model_id): """ Get the model metric valud by its model_id Parameters ---------- model_id : int model index Returns ------- float the model metric """ for item in self.history: if item["model_id"] == model_id: return item["metric_value"] return None def import_data(self, data): pass