def get_train_set(dataset_path: str, image_size: ImageSize): num_joints = 15 left_indexes: List[int] = [3, 4, 5, 9, 10, 11] right_indexes: List[int] = [6, 7, 8, 12, 13, 14] datasets: List[EhpiDataset] = [ # Set 1 EhpiDataset(os.path.join(dataset_path, "ofp_record_2019_03_11_HSRT_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TEST), # Set 2 EhpiDataset(os.path.join(dataset_path, "2019_03_13_Freilichtmuseum_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TRAIN), ] for dataset in datasets: dataset.print_label_statistics() return ConcatDataset(datasets)
def get_training_set_both(dataset_path: str, image_size: ImageSize): num_joints = 15 left_indexes: List[int] = [3, 4, 5, 9, 10, 11] right_indexes: List[int] = [6, 7, 8, 12, 13, 14] datasets: List[EhpiLSTMDataset] = [ EhpiLSTMDataset(os.path.join(dataset_path, "JOURNAL_2019_03_POSEALGO_30fps"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), EhpiLSTMDataset(os.path.join(dataset_path, "JOURNAL_2019_03_GT_30fps"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), ] for dataset in datasets: dataset.print_label_statistics() return ConcatDataset(datasets)
def get_test_set(image_size: ImageSize): num_joints = 15 return EhpiDataset("/media/disks/beta/datasets/ehpi/2019_03_13_Freilichtmuseum_30FPS", transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), NormalizeEhpi(image_size) ]), dataset_part=DatasetPart.TEST, num_joints=num_joints)
def get_test_set(dataset_path: str, image_size: ImageSize): num_joints = 15 return EhpiDataset(os.path.join(dataset_path, "2019_03_13_Freilichtmuseum_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), NormalizeEhpi(image_size) ]), dataset_part=DatasetPart.TEST, num_joints=num_joints)
def get_test_set_lab(dataset_path: str, image_size: ImageSize): num_joints = 15 datasets = [ EhpiLSTMDataset(os.path.join(dataset_path, "JOURNAL_2019_03_TEST_VUE01_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TEST), EhpiLSTMDataset(os.path.join(dataset_path, "JOURNAL_2019_03_TEST_VUE02_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TEST), ] for dataset in datasets: dataset.print_label_statistics() return ConcatDataset(datasets)
def get_test_set(dataset_path: str, image_size: ImageSize): num_joints = 15 return EhpiDataset(dataset_path, transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), NormalizeEhpi(image_size) ]), dataset_part=DatasetPart.TEST, num_joints=num_joints)
def __init__(self, model, feature_vec_producer: FeatureVecProducerEhpi, image_size: ImageSize): self.model = model self.feature_vec_producer = feature_vec_producer self.action_buffer: AlgorithmOutputBuffer = AlgorithmOutputBuffer( buffer_size=32) self.remove = RemoveJointsOutsideImgEhpi(image_size) self.normalize = NormalizeEhpi(image_size) model.cuda() model.eval()
def get_test_set_office(dataset_path: str, image_size: ImageSize): num_joints = 15 dataset = EhpiLSTMDataset(os.path.join(dataset_path, "JOURNAL_2019_04_TEST_EVAL2_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), # ScaleEhpi(image_size), # TranslateEhpi(image_size), # FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TEST) dataset.print_label_statistics() return dataset
def get_sim_pose_algo_only(dataset_path: str, image_size: ImageSize): num_joints = 15 left_indexes: List[int] = [3, 4, 5, 9, 10, 11] right_indexes: List[int] = [6, 7, 8, 12, 13, 14] datasets: List[EhpiDataset] = [ EhpiDataset(os.path.join(dataset_path, "ofp_sim_pose_algo_equal_30fps"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes, probability=0.25), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), EhpiDataset(os.path.join(dataset_path, "ofp_from_mocap_pose_algo_30fps"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes, probability=0.25), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), ] for dataset in datasets: dataset.print_label_statistics() return ConcatDataset(datasets)
def get_training_set(dataset_path: str, image_size: ImageSize): num_joints = 15 left_indexes: List[int] = [3, 4, 5, 9, 10, 11] right_indexes: List[int] = [6, 7, 8, 12, 13, 14] return EhpiDataset(os.path.join(dataset_path, "JHMDB_ITSC-1/"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes, probability=0.25), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints)
# balances = [True, False] for seed in seeds: for batch_size in batch_sizes: for lr in lrs: for weight_decay in weight_decays: print("Seed: {}, Batchsize: {}, LR: {}, Weight Decay: {}". format(seed, batch_size, lr, weight_decay)) set_seed(0) # FIXED SEED FOR DATASET SPLIT! # Load full dataset train_full_set = get_training_set( os.path.join(ehpi_dataset_path, "jhmdb"), image_size) test_full_set = copy(train_full_set) test_full_set.transform = transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), NormalizeEhpi(image_size) ]) # Create train and validation splits train_indices, val_indices = train_full_set.get_subsplit_indices( validation_percentage=0.3) # Train set train_set = Subset(train_full_set, train_indices) # Validation set val_set = Subset(test_full_set, val_indices) val_loader = DataLoader(val_set, batch_size=1, shuffle=False)
def get_full(dataset_path: str, image_size: ImageSize): num_joints = 15 left_indexes: List[int] = [3, 4, 5, 9, 10, 11] right_indexes: List[int] = [6, 7, 8, 12, 13, 14] datasets: List[EhpiDataset] = [ # Real EhpiDataset(os.path.join(dataset_path, "ofp_webcam"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), EhpiDataset(os.path.join(dataset_path, "ofp_record_2019_03_11_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), EhpiDataset(os.path.join(dataset_path, "ofp_record_2019_03_11_HSRT_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TEST), EhpiDataset(os.path.join(dataset_path, "ofp_record_2019_03_11_HELLA_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TRAIN), # Freilichtmuseum EhpiDataset(os.path.join(dataset_path, "2019_03_13_Freilichtmuseum_30FPS"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints, dataset_part=DatasetPart.TRAIN), # Simulated EhpiDataset(os.path.join(dataset_path, "ofp_from_mocap_30fps/"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes, probability=0.25), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), EhpiDataset(os.path.join(dataset_path, "ofp_sim_pose_algo_equal_30fps"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes, probability=0.25), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), EhpiDataset(os.path.join(dataset_path, "ofp_sim_gt_equal_30fps"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes, probability=0.25), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), EhpiDataset(os.path.join(dataset_path, "ofp_from_mocap_gt_30fps"), transform=transforms.Compose([ RemoveJointsOutsideImgEhpi(image_size), RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes, probability=0.25), ScaleEhpi(image_size), TranslateEhpi(image_size), FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes), NormalizeEhpi(image_size) ]), num_joints=num_joints), ] for dataset in datasets: dataset.print_label_statistics() return ConcatDataset(datasets)