def remove_noise(self): y,sr = librosa.load("test.wav") noise_len = 2 # seconds noise = band_limited_noise(min_freq=2000, max_freq = 12000, samples=len(y), samplerate=sr)*10 noise_clip = noise[:sr*noise_len] noise_reduced = nr.reduce_noise(audio_clip=y, noise_clip=noise_clip, prop_decrease=1.0, verbose=False) sf.write('test.wav', noise_reduced, sr) self.predict_lbl['text'] = 'Đã remove noise'
def add_noise(audio_clip, rate): noise_len = 3 noise = band_limited_noise( 4000, 12000, len(audio_clip), rate ) * 10 noise_clip = noise[:rate * noise_len] return audio_clip + noise, noise_clip
def test_reduce_generated_noise_stationary_without_noise_clip(): # load data wav_loc = "assets/fish.wav" rate, data = wavfile.read(wav_loc) # add noise noise_len = 2 # seconds noise = (band_limited_noise( min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10) audio_clip_band_limited = data + noise return nr.reduce_noise(y=audio_clip_band_limited, sr=rate, stationary=True)
def test_reduce_generated_noise(): # load data wav_loc = "assets/fish.wav" rate, data = wavfile.read(wav_loc) data = data / 32768. # add noise noise_len = 2 # seconds noise = band_limited_noise( min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10 noise_clip = noise[:rate * noise_len] audio_clip_band_limited = data + noise return nr.reduce_noise(audio_clip=audio_clip_band_limited, noise_clip=noise_clip, verbose=True)
def test_reduce_generated_noise(): # load data wav_loc = "assets/coffe-1_2020-03-08_170854361.wav" rate, data = wavfile.read(wav_loc) data = int16_to_float32(data) # add noise noise_len = 2 # seconds noise = (band_limited_noise( min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10) noise_clip = noise[:rate * noise_len] audio_clip_band_limited = data + noise return nr.reduce_noise(audio_clip=audio_clip_band_limited, noise_clip=noise_clip, verbose=True)
def test_reduce_generated_noise_batches(): # load data wav_loc = "assets/fish.wav" rate, data = wavfile.read(wav_loc) # add noise noise_len = 2 # seconds noise = (band_limited_noise( min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10) noise_clip = noise[:rate * noise_len] audio_clip_band_limited = data + noise return nr.reduce_noise(y=audio_clip_band_limited, sr=rate, stationary=False, chunk_size=30000)
import numpy as np import io #ucitavanje zvuka wav_loc = "C:/Users/Djordje/Desktop/download.wav" rate, data = wavfile.read(wav_loc) data = data / 32768 IPython.display.Audio(data=data, rate=rate) fig, ax = plt.subplots(figsize=(20, 3)) ax.plot(data) #dodavanje suma noise_len = 2 # sekunde noise = band_limited_noise( min_freq=2000, max_freq=12000, samples=len(data), samplerate=rate) * 10 noise_clip = noise[:rate * noise_len] audio_clip_band_limited = data + noise fig, ax = plt.subplots(figsize=(20, 3)) ax.plot(audio_clip_band_limited) IPython.display.Audio(data=audio_clip_band_limited, rate=rate) #uklanjanje suma noise_reduced = nr.reduce_noise(audio_clip=audio_clip_band_limited, noise_clip=noise_clip, prop_decrease=1.0, verbose=True) #zvuk posle uklonjenog suma