示例#1
0
 def test_plot_occlusion(self, net_fitted, X_train, y_train):
     from nolearn.lasagne.visualize import plot_occlusion
     plot_occlusion(net_fitted, X_train[3:4], [0])
     plot_occlusion(net_fitted, X_train[2:5], [1, 2, 3],
                    square_length=3, figsize=(5, 5))
     plt.clf()
     plt.cla()
示例#2
0
 def test_plot_occlusion_last_layer_has_no_num_units(
         self, net_with_nonlinearity_layer, X_train, y_train):
     from nolearn.lasagne.visualize import plot_occlusion
     net = net_with_nonlinearity_layer
     net.initialize()
     plot_occlusion(net, X_train[3:4], [0])
     plot_occlusion(net, X_train[2:5], [1, 2, 3],
                    square_length=3, figsize=(5, 5))
     plt.clf()
     plt.cla()
示例#3
0
    def test_plot_occlusion_colored_non_square(
            self, net_color_non_square, X_train, y_train):
        import numpy as np
        from nolearn.lasagne.visualize import plot_occlusion
        X = np.hstack(
            (X_train[:, :20 * 28], X_train[:, :20 * 28], X_train[:, :20 * 28]))
        X = X.reshape(-1, 3, 20, 28)

        net_color_non_square.fit(X[:100], y_train[:100])
        plot_occlusion(net_color_non_square, X[:1], [0])
        plot_occlusion(net_color_non_square, X[:3], [3, 2, 1])
        plt.clf()
        plt.cla()
示例#4
0
def plot_occ(path, real):
    global net
    img = load_image(path)

    cats = load_classes()
    X = np.asarray([img], dtype="float32")
    plt = plot_occlusion(net, X, [real])
    return plt
示例#5
0
文件: train.py 项目: Wajsbrot/bees
name = exp_name + '_' + str(date.today())
with open('models/conv_net_'+name+'.pkl', 'wb') as f:
    cPickle.dump(conv_net, f, -1)
conv_net.save_params_to('models/params_'+name)

# ----- Train set ----
train_predictions = conv_net.predict_proba(X)
make_submission_file(train_predictions[:sample_size], images_id[:sample_size],
                     output_filepath='models/training_'+name+'.csv')

# ----- Test set ----
X_test, _, images_id_test = load_numpy_arrays(args['test_file'])
print "Test:"
print "X_test.shape:", X_test.shape
predictions = conv_net.predict_proba(X_test)
make_submission_file(predictions, images_id_test,
                     output_filepath='submissions/submission_'+name+'.csv')

# ----- Make plots ----
plot_loss(conv_net, "models/loss_"+name+".png", show=False)

plot_conv_weights(conv_net.layers_[1], figsize=(4, 4))
plt.savefig('models/weights_'+name+'.png')

plot_conv_activity(conv_net.layers_[1], X[0:1])
plt.savefig('models/activity_'+name+'.png')

plot_occlusion(conv_net, X[:5], y[:5])
plt.savefig('models/occlusion_'+name+'.png')
示例#6
0
 def plot_occlusion(self, net, X, y, **kwargs):
     from nolearn.lasagne.visualize import plot_occlusion
     plot_occlusion(net, X, y, **kwargs)
     plt.clf()
     plt.cla()
def example_occ(n,X,target,sqrL=7,figsize=(9,None)):
	x1=X[n,:,:,:];x1=x1.reshape(1,1,96,96)*-1
	t1=target[n,:]
	v.plot_occlusion(net,x1,t1,sqrL,figsize)
	pyplot.show()
示例#8
0
draw_to_notebook(net0)
plot_loss(net0)
#plot helps determine if we are overfitting:
#If the train loss is much lower than the validation loss,
#we should probably do something to regularize the net.

# visualize layer weights
plot_conv_weights(net0.layers_[1], figsize = (4,4))
#If the weights just look like noise, we might have to do something
#(e.g. use more filters so that each can specialize better).

# visualize layers' activities
x = X_train[0:1] # an image in the bc01 format (so use X[0:1] instead of just X[0]).
plot_conv_activity(net0.layers_[1], x)

plot_occlusion(net0, X_train[:5], y_train[:5])
plot_saliency(net0, X_train[:5])


from nolearn.lasagne import PrintLayerInfo

layers1 = [
    (InputLayer, {'shape': (None, 1, 28, 28)}),

    (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3)}),
    (MaxPool2DLayer, {'pool_size': (2, 2)}),

    (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}),
    (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}),
    (MaxPool2DLayer, {'pool_size': (2, 2)}),
示例#9
0
def test_visualize_functions_with_cnn(mnist):
    # this test simply tests that no exception is raised when using
    # the plotting functions

    from nolearn.lasagne import NeuralNet
    from nolearn.lasagne.visualize import plot_conv_activity
    from nolearn.lasagne.visualize import plot_conv_weights
    from nolearn.lasagne.visualize import plot_loss
    from nolearn.lasagne.visualize import plot_occlusion

    X, y = mnist
    X_train, y_train = X[:100].reshape(-1, 1, 28, 28), y[:100]
    X_train = X_train.reshape(-1, 1, 28, 28)
    num_epochs = 3

    nn = NeuralNet(
        layers=[
            ('input', InputLayer),
            ('conv1', Conv2DLayer),
            ('conv2', Conv2DLayer),
            ('pool2', MaxPool2DLayer),
            ('conv3', Conv2DLayer),
            ('conv4', Conv2DLayer),
            ('pool4', MaxPool2DLayer),
            ('hidden1', DenseLayer),
            ('output', DenseLayer),
        ],
        input_shape=(None, 1, 28, 28),
        output_num_units=10,
        output_nonlinearity=softmax,
        more_params=dict(
            conv1_filter_size=(5, 5),
            conv1_num_filters=16,
            conv2_filter_size=(3, 3),
            conv2_num_filters=16,
            pool2_ds=(3, 3),
            conv3_filter_size=(3, 3),
            conv3_num_filters=16,
            conv4_filter_size=(3, 3),
            conv4_num_filters=16,
            pool4_ds=(2, 2),
            hidden1_num_units=16,
        ),
        update=nesterov_momentum,
        update_learning_rate=0.01,
        update_momentum=0.9,
        max_epochs=num_epochs,
    )

    nn.fit(X_train, y_train)

    plot_loss(nn)
    plot_conv_weights(nn.layers_['conv1'])
    plot_conv_weights(nn.layers_['conv2'], figsize=(1, 2))
    plot_conv_activity(nn.layers_['conv3'], X_train[:1])
    plot_conv_activity(nn.layers_['conv4'], X_train[10:11], figsize=(3, 4))
    plot_occlusion(nn, X_train[:1], y_train[:1])
    plot_occlusion(nn,
                   X_train[2:4],
                   y_train[2:4],
                   square_length=3,
                   figsize=(5, 5))

    # clear figures from memory
    plt.clf()
    plt.cla()
示例#10
0
    def plot_occlusion(self, net, X, y, **kwargs):
        from nolearn.lasagne.visualize import plot_occlusion

        plot_occlusion(net, X, y, **kwargs)
        plt.clf()
        plt.cla()
示例#11
0
def test_visualize_functions_with_cnn(mnist):
    # this test simply tests that no exception is raised when using
    # the plotting functions

    from nolearn.lasagne import NeuralNet
    from nolearn.lasagne.visualize import plot_conv_activity
    from nolearn.lasagne.visualize import plot_conv_weights
    from nolearn.lasagne.visualize import plot_loss
    from nolearn.lasagne.visualize import plot_occlusion

    X, y = mnist
    X_train, y_train = X[:100].reshape(-1, 1, 28, 28), y[:100]
    X_train = X_train.reshape(-1, 1, 28, 28)
    num_epochs = 3

    nn = NeuralNet(
        layers=[
            ('input', InputLayer),
            ('conv1', Conv2DLayer),
            ('conv2', Conv2DLayer),
            ('pool2', MaxPool2DLayer),
            ('conv3', Conv2DLayer),
            ('conv4', Conv2DLayer),
            ('pool4', MaxPool2DLayer),
            ('hidden1', DenseLayer),
            ('output', DenseLayer),
            ],
        input_shape=(None, 1, 28, 28),
        output_num_units=10,
        output_nonlinearity=softmax,

        more_params=dict(
            conv1_filter_size=(5, 5), conv1_num_filters=16,
            conv2_filter_size=(3, 3), conv2_num_filters=16,
            pool2_ds=(3, 3),
            conv3_filter_size=(3, 3), conv3_num_filters=16,
            conv4_filter_size=(3, 3), conv4_num_filters=16,
            pool4_ds=(2, 2),
            hidden1_num_units=16,
            ),

        update=nesterov_momentum,
        update_learning_rate=0.01,
        update_momentum=0.9,

        max_epochs=num_epochs,
        )

    nn.fit(X_train, y_train)

    plot_loss(nn)
    plot_conv_weights(nn.layers_['conv1'])
    plot_conv_weights(nn.layers_['conv2'], figsize=(1, 2))
    plot_conv_activity(nn.layers_['conv3'], X_train[:1])
    plot_conv_activity(nn.layers_['conv4'], X_train[10:11], figsize=(3, 4))
    plot_occlusion(nn, X_train[:1], y_train[:1])
    plot_occlusion(nn, X_train[2:4], y_train[2:4], square_length=3,
                   figsize=(5, 5))

    # clear figures from memory
    plt.clf()
    plt.cla()