def read_split_file(filename): """Read data splits written by write_split_file(). Args: filename: The filename to read from. Returns: Dictionary {split_name: set(ids)} """ with file_utils.Open(filename, 'r') as f: data_splits = json.load(f) return {k: set(v) for k, v in data_splits.items()}
def write_split_file(filename, data_splits): """Write data splits to a file in json format. Args: filename: The filename to write to. data_splits: {split_name: set(ids)} Returns: Nothing. Output is written to disk. """ data_splits = {k: list(v) for k, v in data_splits.items()} with file_utils.Open(filename, 'w') as f: json.dump(data_splits, f)
def main(unused_argv): trill_layer = hub.KerasLayer( handle=FLAGS.trill_location, trainable=False, arguments={'sample_rate': 16000}, output_key='embedding', output_shape=[None, 2048] ) with file_utils.Open(FLAGS.sklearn_location, 'rb') as f: sklearn_model = pickle.load(f) combined_model = combine_models(trill_layer, sklearn_model) for seed in range(20): test_models_equal(trill_layer, sklearn_model, combined_model, seed, runs=10) tf.keras.models.save_model(combined_model, FLAGS.output_filepath)
def train_and_get_score(embedding_name, label_name, label_list, train_glob, eval_glob, test_glob, model_name, l2_normalization, speaker_id_name=None, save_model_dir=None): """Train and eval sklearn models on data. Args: embedding_name: Name of embedding. label_name: Name of label to use. label_list: Python list of all values for label. train_glob: Location of training data, as tf.Examples. eval_glob: Location of eval data, as tf.Examples. test_glob: Location of test data, as tf.Examples. model_name: Name of model. l2_normalization: Python bool. If `True`, normalize embeddings by L2 norm. speaker_id_name: `None`, or name of speaker ID field. save_model_dir: If not `None`, write sklearn models to this directory. Returns: A Python float, of the accuracy on the eval set. """ def _cur_s(s): return time.time() - s def _cur_m(s): return (time.time() - s) / 60.0 # Read and validate data. def _read_glob(glob, name): s = time.time() npx, npy = sklearn_utils.tfexamples_to_nps(glob, embedding_name, label_name, label_list, l2_normalization, speaker_id_name) logging.info('Finished reading %s data: %.2f sec.', name, _cur_s(s)) return npx, npy npx_train, npy_train = _read_glob(train_glob, 'train') npx_eval, npy_eval = _read_glob(eval_glob, 'eval') npx_test, npy_test = _read_glob(test_glob, 'test') # Sanity check npx_*. assert npx_train.size > 0 assert npx_eval.size > 0 assert npx_test.size > 0 # Sanity check npy_train. assert npy_train.size > 0 assert np.unique(npy_train).size > 1 # Sanity check npy_eval. assert npy_eval.size > 0 assert np.unique(npy_eval).size > 1 # Sanity check npy_test. assert npy_test.size > 0 assert np.unique(npy_test).size > 1 # Train models. d = models.get_sklearn_models()[model_name]() logging.info('Made model.') s = time.time() d.fit(npx_train, npy_train) logging.info('Trained model: %.2f min', _cur_m(s)) # Eval. eval_score = d.score(npx_eval, npy_eval) logging.info('%s: %.3f', model_name, eval_score) # Test. test_score = d.score(npx_test, npy_test) logging.info('%s: %.3f', model_name, test_score) # If `save_model_dir` is present, write model to this directory. # To load the model after saving, use: # ```python # with file_utils.Open(model_filename, 'rb') as f: # m = pickle.load(f) # ``` if save_model_dir: file_utils.MaybeMakeDirs(save_model_dir) model_filename = os.path.join(save_model_dir, f'{model_name}.pickle') with file_utils.Open(model_filename, 'wb') as f: pickle.dump(d, f) return (eval_score, test_score)
def train_and_get_score(embedding_name, label_name, label_list, train_glob, eval_glob, test_glob, model_name, l2_normalization, speaker_id_name=None, save_model_dir=None, save_predictions_dir=None, eval_metric='accuracy'): """Train and eval sklearn models on data. Args: embedding_name: Name of embedding. label_name: Name of label to use. label_list: Python list of all values for label. train_glob: Location of training data, as tf.Examples. eval_glob: Location of eval data, as tf.Examples. test_glob: Location of test data, as tf.Examples. model_name: Name of model. l2_normalization: Python bool. If `True`, normalize embeddings by L2 norm. speaker_id_name: `None`, or name of speaker ID field. save_model_dir: If not `None`, write sklearn models to this directory. save_predictions_dir: If not `None`, write numpy array of predictions on train, eval, and test into this directory. eval_metric: String name of the desired evaluation metric. Returns: A tuple of Python floats, (eval metric, test metric). """ def _cur_s(s): return time.time() - s def _cur_m(s): return (time.time() - s) / 60.0 # Read and validate data. def _read_glob(glob, name): s = time.time() npx, npy = sklearn_utils.tfexamples_to_nps(glob, embedding_name, label_name, label_list, l2_normalization, speaker_id_name) logging.info('Finished reading %s %s data: %.2f sec.', embedding_name, name, _cur_s(s)) return npx, npy npx_train, npy_train = _read_glob(train_glob, 'train') npx_eval, npy_eval = _read_glob(eval_glob, 'eval') npx_test, npy_test = _read_glob(test_glob, 'test') # Sanity check npx_*. assert npx_train.size > 0 assert npx_eval.size > 0 assert npx_test.size > 0 # Sanity check npy_train. assert npy_train.size > 0 assert np.unique(npy_train).size > 1 # Sanity check npy_eval. assert npy_eval.size > 0 assert np.unique(npy_eval).size > 1 # Sanity check npy_test. assert npy_test.size > 0 assert np.unique(npy_test).size > 1 # Train models. d = models.get_sklearn_models()[model_name]() logging.info('Made model: %s.', model_name) s = time.time() d.fit(npx_train, npy_train) logging.info('Trained model: %s, %s: %.2f min', model_name, embedding_name, _cur_m(s)) eval_score, test_score = _calc_eval_scores(eval_metric, d, npx_eval, npy_eval, npx_test, npy_test) logging.info('Finished eval: %s: %.3f', model_name, eval_score) logging.info('Finished eval: %s: %.3f', model_name, test_score) # If `save_model_dir` is present, write model to this directory. # To load the model after saving, use: # ```python # with file_utils.Open(model_filename, 'rb') as f: # m = pickle.load(f) # ``` if save_model_dir: cur_models_dir = os.path.join(save_model_dir, embedding_name) file_utils.MaybeMakeDirs(cur_models_dir) model_filename = os.path.join(cur_models_dir, f'{model_name}.pickle') with file_utils.Open(model_filename, 'wb') as f: pickle.dump(d, f) if save_predictions_dir: cur_preds_dir = os.path.join(save_predictions_dir, embedding_name) file_utils.MaybeMakeDirs(cur_preds_dir) for dat_name, dat_x, dat_y in [('train', npx_train, npy_train), ('eval', npx_eval, npy_eval), ('test', npx_test, npy_test)]: pred_filename = os.path.join(cur_preds_dir, f'{model_name}_{dat_name}_pred.npz') pred_y = d.predict(dat_x) with file_utils.Open(pred_filename, 'wb') as f: np.save(f, pred_y) y_filename = os.path.join(cur_preds_dir, f'{model_name}_{dat_name}_y.npz') with file_utils.Open(y_filename, 'wb') as f: np.save(f, dat_y) return (eval_score, test_score)