def _generate(self, input_sequence, generator_options): if len(generator_options.input_sections) > 1: raise sequence_generator.SequenceGeneratorError( 'This model supports at most one input_sections message, but got %s' % len(generator_options.input_sections)) if len(generator_options.generate_sections) != 1: raise sequence_generator.SequenceGeneratorError( 'This model supports only 1 generate_sections message, but got %s' % len(generator_options.generate_sections)) generate_section = generator_options.generate_sections[0] if generator_options.input_sections: input_section = generator_options.input_sections[0] primer_sequence = note_seq.trim_note_sequence( input_sequence, input_section.start_time, input_section.end_time) input_start_step = note_seq.quantize_to_step( input_section.start_time, self.steps_per_second, quantize_cutoff=0.0) else: primer_sequence = input_sequence input_start_step = 0 if primer_sequence.notes: last_end_time = max(n.end_time for n in primer_sequence.notes) else: last_end_time = 0 if last_end_time > generate_section.start_time: raise sequence_generator.SequenceGeneratorError( 'Got GenerateSection request for section that is before or equal to ' 'the end of the NoteSequence. This model can only extend sequences. ' 'Requested start time: %s, Final note end time: %s' % (generate_section.start_time, last_end_time)) # Quantize the priming sequence. quantized_primer_sequence = note_seq.quantize_note_sequence_absolute( primer_sequence, self.steps_per_second) extracted_perfs, _ = performance_pipeline.extract_performances( quantized_primer_sequence, start_step=input_start_step, num_velocity_bins=self.num_velocity_bins, note_performance=self._note_performance) assert len(extracted_perfs) <= 1 generate_start_step = note_seq.quantize_to_step( generate_section.start_time, self.steps_per_second, quantize_cutoff=0.0) # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it # always rounds down. This avoids generating a sequence that ends at 5.0 # seconds when the requested end time is 4.99. generate_end_step = note_seq.quantize_to_step( generate_section.end_time, self.steps_per_second, quantize_cutoff=1.0) if extracted_perfs and extracted_perfs[0]: performance = extracted_perfs[0] else: # If no track could be extracted, create an empty track that starts at the # requested generate_start_step. performance = note_seq.Performance( steps_per_second=(quantized_primer_sequence.quantization_info. steps_per_second), start_step=generate_start_step, num_velocity_bins=self.num_velocity_bins) # Ensure that the track extends up to the step we want to start generating. performance.set_length(generate_start_step - performance.start_step) # Extract generation arguments from generator options. arg_types = { 'disable_conditioning': lambda arg: ast.literal_eval(arg.string_value), 'temperature': lambda arg: arg.float_value, 'beam_size': lambda arg: arg.int_value, 'branch_factor': lambda arg: arg.int_value, 'steps_per_iteration': lambda arg: arg.int_value } if self.control_signals: for control in self.control_signals: arg_types[control.name] = lambda arg: ast.literal_eval( arg.string_value) args = dict((name, value_fn(generator_options.args[name])) for name, value_fn in arg_types.items() if name in generator_options.args) # Make sure control signals are present and convert to lists if necessary. if self.control_signals: for control in self.control_signals: if control.name not in args: tf.logging.warning( 'Control value not specified, using default: %s = %s', control.name, control.default_value) args[control.name] = [control.default_value] elif control.validate(args[control.name]): args[control.name] = [args[control.name]] else: if not isinstance(args[control.name], list) or not all( control.validate(value) for value in args[control.name]): tf.logging.fatal('Invalid control value: %s = %s', control.name, args[control.name]) # Make sure disable conditioning flag is present when conditioning is # optional and convert to list if necessary. if self.optional_conditioning: if 'disable_conditioning' not in args: args['disable_conditioning'] = [False] elif isinstance(args['disable_conditioning'], bool): args['disable_conditioning'] = [args['disable_conditioning']] else: if not isinstance( args['disable_conditioning'], list) or not all( isinstance(value, bool) for value in args['disable_conditioning']): tf.logging.fatal('Invalid disable_conditioning value: %s', args['disable_conditioning']) total_steps = performance.num_steps + (generate_end_step - generate_start_step) if 'notes_per_second' in args: mean_note_density = (sum(args['notes_per_second']) / len(args['notes_per_second'])) else: mean_note_density = DEFAULT_NOTE_DENSITY # Set up functions that map generation step to control signal values and # disable conditioning flag. if self.control_signals: control_signal_fns = [] for control in self.control_signals: control_signal_fns.append( functools.partial(_step_to_value, num_steps=total_steps, values=args[control.name])) del args[control.name] args['control_signal_fns'] = control_signal_fns if self.optional_conditioning: args['disable_conditioning_fn'] = functools.partial( _step_to_value, num_steps=total_steps, values=args['disable_conditioning']) del args['disable_conditioning'] if not performance: # Primer is empty; let's just start with silence. performance.set_length( min(performance.max_shift_steps, total_steps)) while performance.num_steps < total_steps: # Assume the average specified (or default) note density and 4 RNN steps # per note. Can't know for sure until generation is finished because the # number of notes per quantized step is variable. note_density = max(1.0, mean_note_density) steps_to_gen = total_steps - performance.num_steps rnn_steps_to_gen = int( math.ceil(4.0 * note_density * steps_to_gen / self.steps_per_second)) tf.logging.info( 'Need to generate %d more steps for this sequence, will try asking ' 'for %d RNN steps' % (steps_to_gen, rnn_steps_to_gen)) performance = self._model.generate_performance( len(performance) + rnn_steps_to_gen, performance, **args) if not self.fill_generate_section: # In the interest of speed just go through this loop once, which may not # entirely fill the generate section. break performance.set_length(total_steps) generated_sequence = performance.to_sequence( max_note_duration=self.max_note_duration) assert (generated_sequence.total_time - generate_section.end_time) <= 1e-5 return generated_sequence
def _generate(self, input_sequence, generator_options): if len(generator_options.input_sections) > 1: raise sequence_generator.SequenceGeneratorError( 'This model supports at most one input_sections message, but got %s' % len(generator_options.input_sections)) if len(generator_options.generate_sections) != 1: raise sequence_generator.SequenceGeneratorError( 'This model supports only 1 generate_sections message, but got %s' % len(generator_options.generate_sections)) # This sequence will be quantized later, so it is guaranteed to have only 1 # tempo. qpm = note_seq.DEFAULT_QUARTERS_PER_MINUTE if input_sequence.tempos: qpm = input_sequence.tempos[0].qpm steps_per_second = note_seq.steps_per_quarter_to_steps_per_second( self.steps_per_quarter, qpm) generate_section = generator_options.generate_sections[0] if generator_options.input_sections: input_section = generator_options.input_sections[0] primer_sequence = note_seq.trim_note_sequence( input_sequence, input_section.start_time, input_section.end_time) input_start_step = note_seq.quantize_to_step( input_section.start_time, steps_per_second, quantize_cutoff=0) else: primer_sequence = input_sequence input_start_step = 0 if primer_sequence.notes: last_end_time = max(n.end_time for n in primer_sequence.notes) else: last_end_time = 0 if last_end_time > generate_section.start_time: raise sequence_generator.SequenceGeneratorError( 'Got GenerateSection request for section that is before or equal to ' 'the end of the NoteSequence. This model can only extend sequences. ' 'Requested start time: %s, Final note end time: %s' % (generate_section.start_time, last_end_time)) # Quantize the priming sequence. quantized_primer_sequence = note_seq.quantize_note_sequence( primer_sequence, self.steps_per_quarter) extracted_seqs, _ = polyphony_lib.extract_polyphonic_sequences( quantized_primer_sequence, start_step=input_start_step) assert len(extracted_seqs) <= 1 generate_start_step = note_seq.quantize_to_step( generate_section.start_time, steps_per_second, quantize_cutoff=0) # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it # always rounds down. This avoids generating a sequence that ends at 5.0 # seconds when the requested end time is 4.99. generate_end_step = note_seq.quantize_to_step( generate_section.end_time, steps_per_second, quantize_cutoff=1.0) if extracted_seqs and extracted_seqs[0]: poly_seq = extracted_seqs[0] else: # If no track could be extracted, create an empty track that starts at the # requested generate_start_step. This will result in a sequence that # contains only the START token. poly_seq = polyphony_lib.PolyphonicSequence( steps_per_quarter=(quantized_primer_sequence.quantization_info. steps_per_quarter), start_step=generate_start_step) # Ensure that the track extends up to the step we want to start generating. poly_seq.set_length(generate_start_step - poly_seq.start_step) # Trim any trailing end events to prepare the sequence for more events to be # appended during generation. poly_seq.trim_trailing_end_events() # Extract generation arguments from generator options. arg_types = { 'temperature': lambda arg: arg.float_value, 'beam_size': lambda arg: arg.int_value, 'branch_factor': lambda arg: arg.int_value, 'steps_per_iteration': lambda arg: arg.int_value } args = dict((name, value_fn(generator_options.args[name])) for name, value_fn in arg_types.items() if name in generator_options.args) # Inject the priming sequence as melody in the output of the generator, if # requested. # This option starts with no_ so that if it is unspecified (as will be the # case when used with the midi interface), the default will be to inject the # primer. if not (generator_options.args['no_inject_primer_during_generation']. bool_value): melody_to_inject = copy.deepcopy(poly_seq) if generator_options.args['condition_on_primer'].bool_value: inject_start_step = poly_seq.num_steps else: # 0 steps because we'll overwrite poly_seq with a blank sequence below. inject_start_step = 0 args['modify_events_callback'] = functools.partial( _inject_melody, melody_to_inject, inject_start_step) # If we don't want to condition on the priming sequence, then overwrite # poly_seq with a blank sequence to feed into the generator. if not generator_options.args['condition_on_primer'].bool_value: poly_seq = polyphony_lib.PolyphonicSequence( steps_per_quarter=(quantized_primer_sequence.quantization_info. steps_per_quarter), start_step=generate_start_step) poly_seq.trim_trailing_end_events() total_steps = poly_seq.num_steps + (generate_end_step - generate_start_step) while poly_seq.num_steps < total_steps: # Assume it takes ~5 rnn steps to generate one quantized step. # Can't know for sure until generation is finished because the number of # notes per quantized step is variable. steps_to_gen = total_steps - poly_seq.num_steps rnn_steps_to_gen = 5 * steps_to_gen tf.logging.info( 'Need to generate %d more steps for this sequence, will try asking ' 'for %d RNN steps' % (steps_to_gen, rnn_steps_to_gen)) poly_seq = self._model.generate_polyphonic_sequence( len(poly_seq) + rnn_steps_to_gen, poly_seq, **args) poly_seq.set_length(total_steps) if generator_options.args['condition_on_primer'].bool_value: generated_sequence = poly_seq.to_sequence(qpm=qpm) else: # Specify a base_note_sequence because the priming sequence was not # included in poly_seq. generated_sequence = poly_seq.to_sequence( qpm=qpm, base_note_sequence=copy.deepcopy(primer_sequence)) assert (generated_sequence.total_time - generate_section.end_time) <= 1e-5 return generated_sequence
def _generate(self, input_sequence, generator_options): if len(generator_options.input_sections) > 1: raise sequence_generator.SequenceGeneratorError( 'This model supports at most one input_sections message, but got %s' % len(generator_options.input_sections)) if len(generator_options.generate_sections) != 1: raise sequence_generator.SequenceGeneratorError( 'This model supports only 1 generate_sections message, but got %s' % len(generator_options.generate_sections)) if input_sequence and input_sequence.tempos: qpm = input_sequence.tempos[0].qpm else: qpm = note_seq.DEFAULT_QUARTERS_PER_MINUTE steps_per_second = note_seq.steps_per_quarter_to_steps_per_second( self.steps_per_quarter, qpm) generate_section = generator_options.generate_sections[0] if generator_options.input_sections: input_section = generator_options.input_sections[0] primer_sequence = note_seq.trim_note_sequence(input_sequence, input_section.start_time, input_section.end_time) input_start_step = note_seq.quantize_to_step( input_section.start_time, steps_per_second, quantize_cutoff=0) else: primer_sequence = input_sequence input_start_step = 0 if primer_sequence.notes: last_end_time = max(n.end_time for n in primer_sequence.notes) else: last_end_time = 0 if last_end_time > generate_section.start_time: raise sequence_generator.SequenceGeneratorError( 'Got GenerateSection request for section that is before the end of ' 'the NoteSequence. This model can only extend sequences. Requested ' 'start time: %s, Final note end time: %s' % (generate_section.start_time, last_end_time)) # Quantize the priming sequence. quantized_sequence = note_seq.quantize_note_sequence( primer_sequence, self.steps_per_quarter) # Setting gap_bars to infinite ensures that the entire input will be used. extracted_melodies, _ = melody_pipelines.extract_melodies( quantized_sequence, search_start_step=input_start_step, min_bars=0, min_unique_pitches=1, gap_bars=float('inf'), ignore_polyphonic_notes=True) assert len(extracted_melodies) <= 1 start_step = note_seq.quantize_to_step( generate_section.start_time, steps_per_second, quantize_cutoff=0) # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it # always rounds down. This avoids generating a sequence that ends at 5.0 # seconds when the requested end time is 4.99. end_step = note_seq.quantize_to_step( generate_section.end_time, steps_per_second, quantize_cutoff=1.0) if extracted_melodies and extracted_melodies[0]: melody = extracted_melodies[0] else: # If no melody could be extracted, create an empty melody that starts 1 # step before the request start_step. This will result in 1 step of # silence when the melody is extended below. steps_per_bar = int( note_seq.steps_per_bar_in_quantized_sequence(quantized_sequence)) melody = note_seq.Melody([], start_step=max(0, start_step - 1), steps_per_bar=steps_per_bar, steps_per_quarter=self.steps_per_quarter) # Ensure that the melody extends up to the step we want to start generating. melody.set_length(start_step - melody.start_step) # Extract generation arguments from generator options. arg_types = { 'temperature': lambda arg: arg.float_value, 'beam_size': lambda arg: arg.int_value, 'branch_factor': lambda arg: arg.int_value, 'steps_per_iteration': lambda arg: arg.int_value } args = dict((name, value_fn(generator_options.args[name])) for name, value_fn in arg_types.items() if name in generator_options.args) generated_melody = self._model.generate_melody( end_step - melody.start_step, melody, **args) generated_sequence = generated_melody.to_sequence(qpm=qpm) assert (generated_sequence.total_time - generate_section.end_time) <= 1e-5 return generated_sequence
def _generate(self, input_sequence, generator_options): if len(generator_options.input_sections) > 1: raise sequence_generator.SequenceGeneratorError( 'This model supports at most one input_sections message, but got %s' % len(generator_options.input_sections)) if len(generator_options.generate_sections) != 1: raise sequence_generator.SequenceGeneratorError( 'This model supports only 1 generate_sections message, but got %s' % len(generator_options.generate_sections)) # This sequence will be quantized later, so it is guaranteed to have only 1 # tempo. qpm = note_seq.DEFAULT_QUARTERS_PER_MINUTE if input_sequence.tempos: qpm = input_sequence.tempos[0].qpm steps_per_second = note_seq.steps_per_quarter_to_steps_per_second( self.steps_per_quarter, qpm) generate_section = generator_options.generate_sections[0] if generator_options.input_sections: input_section = generator_options.input_sections[0] primer_sequence = note_seq.trim_note_sequence( input_sequence, input_section.start_time, input_section.end_time) input_start_step = note_seq.quantize_to_step( input_section.start_time, steps_per_second, quantize_cutoff=0) else: primer_sequence = input_sequence input_start_step = 0 if primer_sequence.notes: last_end_time = max(n.end_time for n in primer_sequence.notes) else: last_end_time = 0 if last_end_time > generate_section.start_time: raise sequence_generator.SequenceGeneratorError( 'Got GenerateSection request for section that is before or equal to ' 'the end of the NoteSequence. This model can only extend sequences. ' 'Requested start time: %s, Final note end time: %s' % (generate_section.start_time, last_end_time)) # Quantize the priming sequence. quantized_primer_sequence = note_seq.quantize_note_sequence( primer_sequence, self.steps_per_quarter) extracted_seqs, _ = pianoroll_pipeline.extract_pianoroll_sequences( quantized_primer_sequence, start_step=input_start_step) assert len(extracted_seqs) <= 1 generate_start_step = note_seq.quantize_to_step( generate_section.start_time, steps_per_second, quantize_cutoff=0) # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it # always rounds down. This avoids generating a sequence that ends at 5.0 # seconds when the requested end time is 4.99. generate_end_step = note_seq.quantize_to_step( generate_section.end_time, steps_per_second, quantize_cutoff=1.0) if extracted_seqs and extracted_seqs[0]: pianoroll_seq = extracted_seqs[0] else: raise ValueError('No priming pianoroll could be extracted.') # Ensure that the track extends up to the step we want to start generating. pianoroll_seq.set_length(generate_start_step - pianoroll_seq.start_step) # Extract generation arguments from generator options. arg_types = { 'beam_size': lambda arg: arg.int_value, 'branch_factor': lambda arg: arg.int_value, } args = dict((name, value_fn(generator_options.args[name])) for name, value_fn in arg_types.items() if name in generator_options.args) total_steps = pianoroll_seq.num_steps + (generate_end_step - generate_start_step) pianoroll_seq = self._model.generate_pianoroll_sequence( total_steps, pianoroll_seq, **args) pianoroll_seq.set_length(total_steps) generated_sequence = pianoroll_seq.to_sequence(qpm=qpm) assert (generated_sequence.total_time - generate_section.end_time) <= 1e-5 return generated_sequence