def main(): device = torch_mlir.mlir_device() model = Net() tensor = torch.randn((64, 1, 28, 28), requires_grad=True) # CHECK: PASS! fwd check fwd_path = test.check_ref(model, tensor) target = torch.ones((64), dtype=torch.long) loss = F.nll_loss # CHECK: PASS! back check test.check_back(fwd_path, target, loss) # CHECK: PASS! fc1_weight_grad check test.compare(model.fc1.weight.grad, fwd_path[0].fc1.weight.grad, "fc1_weight_grad")
Cout = 4 w = 10 h = 10 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(Cin, Cout, (3,3)) def forward(self, x): x = self.conv1(x) output = F.log_softmax(x, dim=1) return output model = Net() tensor = torch.randn(N, Cin, h, w) # CHECK: PASS! fwd check fwd_path = test.check_ref(model, tensor) loss = torch.nn.NLLLoss() target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, Cout) # CHECK: PASS! back check test.check_back(fwd_path, target, loss) # CHECK: PASS! weight_grad check test.compare(model.conv1.weight.grad, fwd_path[0].conv1.weight.grad, "weight_grad") # CHECK: PASS! bias_grad check test.compare(model.conv1.bias.grad, fwd_path[0].conv1.bias.grad, "bias_grad")
# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. import torch import npcomp.frontends.pytorch as torch_mlir import npcomp.frontends.pytorch.test as test # RUN: python %s | FileCheck %s model = torch.nn.Conv2d(2,16,7,stride=[2,2], padding=[3,3], dilation=1, groups=1, bias=True) tensor = torch.randn((1,2,128,128)) # CHECK: PASS! fwd check test.check_ref(model, tensor)