示例#1
0
 def setUp(self):
   super(TestOnDenseGrid, self).setUp()
   sparse_grid_context = nql_test_lib.make_grid()
   context = nql.NeuralQueryContext()
   # copy the grid but densify some of it
   context.declare_relation('n', 'place_t', 'place_t')
   context.declare_relation('s', 'place_t', 'place_t')
   context.declare_relation('e', 'place_t', 'place_t')
   context.declare_relation('w', 'place_t', 'place_t')
   context.declare_relation('color', 'place_t', 'color_t', dense=True)
   context.declare_relation('distance_to', 'place_t', 'corner_t')
   # copy the type definitions
   for type_name in sparse_grid_context.get_type_names():
     entity_list = [
         sparse_grid_context.get_entity_name(i, type_name)
         for i in range(sparse_grid_context.get_max_id(type_name))
     ]
     context.extend_type(type_name, entity_list)
   # copy the data over
   for r in sparse_grid_context.get_relation_names():
     m = sparse_grid_context.get_initial_value(r)
     if context.is_dense(r):
       context.set_initial_value(r, m.todense())
     else:
       context.set_initial_value(r, m)
   self.context = context
   self.session = tf.Session()
示例#2
0
 def setUp(self):
   super(TestOnGrid, self).setUp()
   self.context = nql_test_lib.make_grid()
   self.session = tf.Session()