示例#1
0
k = 85 * W / (m * K)
print "thermal conductivity", k

#this is the density
rho = 8.7 * g / cm**3
print "density", rho

print k / (rho * C) * SI(1, ["K", 1, "m", -2])
print 1 / (rho * C * sigma) * (SI(1, ["A", 1, "m", -2]))**2

c_heat = C * rho  #should it be the other way round?

print "Heat capacity is", c_heat

from nsim.su_units import SimulationUnits
su = SimulationUnits(scales={'A': 1e-3, 'kg': 1e-27, 'm': 1e-9, 's': 1e-12})

print "Simulation units are\n", su

T_initial = SI(0, "K")

#work out expected voltage:

j = 1e12 * SI("A/m^2")

#length
l = 1000 * nm
#width
w = 50 * nm
#height
h = 20 * nm
示例#2
0
文件: H.py 项目: fangohr/nmag-doc
k = 85*W/(m*K)
print "thermal conductivity",k

#this is the density
rho = 8.7*g/cm**3
print "density",rho

print k/(rho*C)*SI(1,["K",1,"m",-2])
print 1/(rho*C*sigma)*(SI(1,["A",1,"m",-2]))**2

c_heat = C*rho #should it be the other way round?

print "Heat capacity is",c_heat

from nsim.su_units import SimulationUnits
su = SimulationUnits(scales={'A': 1e-3,'kg': 1e-27,'m': 1e-9,'s': 1e-12})

print "Simulation units are\n",su

T_initial=SI(0,"K")




#work out expected voltage:

j=1e12*SI("A/m^2")

#length
l = 1000*nm
#width
示例#3
0
import logging
import nsim.logtools
import nfem.visual
import ocaml,math

from nsim import linalg_machine as nlam
import nmesh

#nsim.logtools.setGlobalLogLevel("debug")

#the constants

from nsim.si_units import SI

from nsim.su_units import SimulationUnits
su = SimulationUnits(scales={'A': 1e-3,'kg': 1e-27,'m': 1e-9,'s': 1e-12})

uOhm_cm = SI(1e-6*1e-2,"Ohm m")
J_per_gK = SI(1e3,"J/ kg K")
W_per_mK = SI(1,"W/ m K")
g_per_cm3 = SI(1e3,"kg / m^3")

# Material parameters
#
# Note that we assume the electrical resistivity of the substrate
# to be "infinite", hence, we do not associate electrical degrees
# of freedom to it.

rho_el_Py =  30e-6*uOhm_cm # "12-45"
rho_el_Au =  2.44e*uOhm_cm
示例#4
0
文件: j-T.py 项目: fangohr/nmag-doc
# this is the density
rho = 8.7 * g / cm ** 3
print "density", rho

print k / (rho * C) * SI(1, ["K", 1, "m", -2])
print 1 / (rho * C * sigma) * (SI(1, ["A", 1, "m", -2])) ** 2

c_heat = C * rho  # should it be the other way round?

print "Heat capacity is", c_heat


from nsim.su_units import SimulationUnits

su = SimulationUnits(scales={"A": 1e-3, "kg": 1e-27, "m": 1e-9, "s": 1e-12})

print "Simulation units are\n", su

T_initial = SI(0, "K")


def jT_lam(
    name="jT",
    sigma_el=1.0,  # electrical conductivity
    sigma_th=0.1,  # thermal conductivity
    c_heat=1.0 / 10.0,  # heat capacity
    T_initial=300.0,
    mesh=None,
    ksp_tolerances={},
):
示例#5
0
k = 85*W/(m*K)
print "thermal conductivity",k

#this is the density
rho = 8.7*g/cm**3
print "density",rho

print k/(rho*C)*SI(1,["K",1,"m",-2])
print 1/(rho*C*sigma)*(SI(1,["A",1,"m",-2]))**2

c_heat = C*rho #should it be the other way round?

print "Heat capacity is",c_heat

from nsim.su_units import SimulationUnits
su = SimulationUnits(scales={'A': 1e-3,'kg': 1e-27,'m': 1e-9,'s': 1e-12})

print "Simulation units are\n",su

T_initial=SI(0,"K")




#work out expected voltage:

j=1e12*SI("A/m^2")

#length
l = 1000*nm
#width