示例#1
0
def test_UPGM_on_third_analytical_example_non_zero_start():
    print(
        '# Test UPGM on Third Analytical Example (constrained dual). Start at NON-0.'
    )
    # see definition of AnalyticalExampleInnerProblem for problem and solution statement
    analytical_inner_problem = ConstrainedDualAnalyticalExampleInnerProblem()

    dual_method = UniversalPGM(analytical_inner_problem.oracle,
                               analytical_inner_problem.projection_function,
                               dimension=analytical_inner_problem.dimension)

    # we set the initial point somewhere not 0
    dual_method.lambda_hat_k = dual_method.projection_function(
        np.array([-2, 2]))
    logger = GenericDualMethodLogger(dual_method)

    for iteration in range(5):
        # print(dual_method.lambda_k)
        # print(dual_method.lambda_tilde_k)
        # print(dual_method.d_k)
        dual_method.dual_step()

    # Method should end close to lambda*, where lambda*[1] = 0.5 - lambda*[0], and 0<= lambda*[0] <= 0.5
    lambda_star = logger.lambda_k_iterates[-1]
    # print(lambda_star)
    assert 0 <= lambda_star[0] <= 0.5
    assert lambda_star[1] == 0.5 - lambda_star[0]
    # with value close to dual optimum
    np.testing.assert_allclose(logger.d_k_iterates[-1], -1.0, atol=0.01)
示例#2
0
def test_averaged_UPGM_on_analytical_example():
    print('# Test averaged UPGM on Analytical Example')
    # see definition of AnalyticalExampleInnerProblem for problem and solution statement
    analytical_inner_problem = AnalyticalExampleInnerProblem()

    dual_method = UniversalPGM(analytical_inner_problem.oracle,
                               analytical_inner_problem.projection_function,
                               dimension=analytical_inner_problem.dimension,
                               epsilon=0.01,
                               averaging=True)

    logger = GenericDualMethodLogger(dual_method)

    for iteration in range(50):
        # print(dual_method.S_k)
        # print(dual_method.lambda_k)
        # print(dual_method.d_k)
        dual_method.dual_step()

    # When averaging is turned on, method is much slower. Method should end close to lambda* but get to about [0.3, 0.7]
    np.testing.assert_allclose(logger.lambda_k_iterates[-1],
                               np.array([0.3, 0.7]),
                               atol=0.1)
    # should be close to optimal value (-0.5) but is at -0.8
    np.testing.assert_allclose(logger.d_k_iterates[-1], -0.8, atol=0.1)
示例#3
0
def test_averaged_UFGM_on_analytical_example():
    print('# Test Averaged UFGM on Analytical Example')
    # see definition of AnalyticalExampleInnerProblem for problem and solution statement
    analytical_inner_problem = AnalyticalExampleInnerProblem()

    dual_method = UniversalFGM(analytical_inner_problem.oracle,
                               analytical_inner_problem.projection_function,
                               dimension=analytical_inner_problem.dimension,
                               epsilon=0.1,
                               averaging=False)

    logger = GenericDualMethodLogger(dual_method)

    for iteration in range(40):
        # print(dual_method.lambda_k)
        # print dual_method.d_k
        dual_method.dual_step()

    # Method should end close to lambda*
    np.testing.assert_allclose(logger.lambda_k_iterates[-1],
                               np.array([1., 1.]),
                               rtol=1e-1,
                               atol=0)
    # with value close to dual optimum
    np.testing.assert_allclose(logger.d_k_iterates[-1],
                               -0.5,
                               rtol=1e-1,
                               atol=0)
示例#4
0
def test_subgradient_method_on_analytical_example():
    print('# Test Subgradient Method on Analytical Example (2 ineq)')
    # see definition of AnalyticalExampleInnerProblem for problem and solution statement
    analytical_inner_problem = AnalyticalExampleInnerProblem()

    dual_method = SubgradientMethod(
        analytical_inner_problem.oracle,
        analytical_inner_problem.projection_function,
        dimension=analytical_inner_problem.dimension,
        sense='max')

    logger = GenericDualMethodLogger(dual_method)

    for iteration in range(10):
        # print dual_method.lambda_k
        # print dual_method.d_k
        dual_method.dual_step()

    # Method should end close to lambda*
    np.testing.assert_allclose(logger.lambda_k_iterates[-1],
                               np.array([0.91, 1.]),
                               rtol=1e-2,
                               atol=0)
    # with value close to dual optimum
    np.testing.assert_allclose(logger.d_k_iterates[-1],
                               -0.54,
                               rtol=1e-2,
                               atol=0)
def test_DSA_on_analytical_example():
    print('# Test Double Simple Averaging Method on Analytical Example')

    # see definition of AnalyticalExampleInnerProblem for problem and solution statement
    analytical_inner_problem = AnalyticalExampleInnerProblem()

    # it looks like lower gammas give faster convergence, but more oscillations
    GAMMA = 0.5
    dual_method = SGMDoubleSimpleAveraging(
        analytical_inner_problem.oracle,
        analytical_inner_problem.projection_function,
        dimension=analytical_inner_problem.dimension,
        gamma=GAMMA,
        sense='max')
    logger = GenericDualMethodLogger(dual_method)

    for iteration in range(20):
        # print dual_method.lambda_k
        # print dual_method.d_k
        dual_method.dual_step()

    # Method should end close to lambda*
    # np.testing.assert_allclose(logger.lambda_k_iterates[-1], np.array([1., 1.]), rtol=1e-1, atol=0)
    assert 0.95 <= logger.lambda_k_iterates[-1][
        0] <= 1.05  # first coordinate should be ~1.0
    assert 0.95 <= logger.lambda_k_iterates[-1][
        1] <= 1.55  # second coordinate should be 1.0 <= coord <= 1.5
    # with value close to dual optimum
    np.testing.assert_allclose(logger.d_k_iterates[-1],
                               -0.5,
                               rtol=1e-1,
                               atol=0)
示例#6
0
def test_subgradient_method_sanity_checks():
    print('# Test Subgradient Method Sanity')
    # ensure STEPSIZE_0 has defaults
    # subgradient_method = SubgradientMethod('oracle', 'projection')
    # custom STEPSIZE_0
    subgradient_method = SubgradientMethod(mock_one_dim_oracle,
                                           mock_projection_function,
                                           dimension=1,
                                           stepsize_0=1.5,
                                           stepsize_rule='constant',
                                           sense='max')
    # logging
    logger = GenericDualMethodLogger(subgradient_method)

    # verify initial state
    assert subgradient_method.lambda_k == 0

    for iteration in range(3):
        subgradient_method.dual_step()
        # start: lambda_k = 0
        # it 1: lambda_k = 1.95 = 0 + 1.5 (STEPSIZE_0) * 1.3 (diff_d_k from mock_oracle)
        # it 2: lambda_k = 3.9 = 1.95 + 1.95
        # it 3: lambda_k = 5.85

    for iteration in range(3):
        # default stepsize rule is 1/k
        subgradient_method.dual_step()
        # it 4: lambda_k = 6.3375 = 5.85 + (1.5/4) * 1.3
        # etc.

    print(subgradient_method.desc)

    # verify final states with mock oracle
    assert subgradient_method.x_k == 1.1
    assert subgradient_method.d_k == 1.2

    # print(logger.lambda_k_iterates)
    np.testing.assert_allclose(
        logger.lambda_k_iterates,
        np.array([[0], [1.95], [3.9], [5.85], [7.8], [9.75]]),  # [11.7]
        atol=0.1)
def test_DSA_on_Bertsekas_example():
    print('# DSA on Bertsekas Example')

    # see definition of AnalyticalExampleInnerProblem for problem and solution statement
    analytical_inner_problem = BertsekasCounterExample()

    # it looks like lower gammas give faster convergence, but more oscillations
    GAMMA = 0.5
    dual_method = SGMDoubleSimpleAveraging(
        analytical_inner_problem.oracle,
        analytical_inner_problem.projection_function,
        dimension=analytical_inner_problem.dimension,
        gamma=0.5,
        sense='max')
    logger = GenericDualMethodLogger(dual_method)

    # move initial point
    lambda_0 = np.array([2, 2])
    dual_method.lambda_k = lambda_0

    for iteration in range(20):
        # print(dual_method.lambda_k)
        # print(dual_method.d_k)
        dual_method.dual_step()
        # print(logger.d_k_iterates)
        # print(logger.lambda_k_iterates)

    # Method should end close to lambda*
    assert -3 <= logger.lambda_k_iterates[-1][
        0] <= -2.2  # first coordinate should be ~3.0
    assert 0 <= logger.lambda_k_iterates[-1][
        1] <= 0.5  # second coordinate should be ~0
    # with value close to dual optimum
    np.testing.assert_allclose(logger.d_k_iterates[-1],
                               23.15,
                               rtol=1e-1,
                               atol=0)
示例#8
0
def test_UPGM_on_second_analytical_example():
    print('# Test UPGM on Second Analytical Example (1 eq, 1 ineq)')
    # see definition of AnalyticalExampleInnerProblem for problem and solution statement
    analytical_inner_problem = SecondAnalyticalExampleInnerProblem()

    dual_method = UniversalPGM(analytical_inner_problem.oracle,
                               analytical_inner_problem.projection_function,
                               dimension=analytical_inner_problem.dimension,
                               epsilon=0.01)

    logger = GenericDualMethodLogger(dual_method)

    for iteration in range(5):
        # print(dual_method.lambda_k)
        # print(dual_method.d_k)
        # print(logger.L_k_iterates)
        dual_method.dual_step()

    # Method should end close to lambda*
    np.testing.assert_allclose(logger.lambda_k_iterates[-1],
                               np.array([1., 0.]),
                               atol=0.1)
    # with value close to dual optimum
    np.testing.assert_allclose(logger.d_k_iterates[-1], -1, rtol=1e-1, atol=0)