def plot_relevance_heatmap(self, onehot_seq, label, save_fig): relevance = self.run_relevance(onehot_seq, label) seq = dbt.onehot_to_nuc(onehot_seq.T) fig, ax = nucheatmap.nuc_heatmap(seq, relevance, save_fig=save_fig, clims=[0, np.max(relevance)], cmap='Blues')
def plot_avg_alipanahi_mutmap_of_batcher(self, batcher, fsuffix=''): amutmaps = self.avg_alipanahi_mutmap_of_batcher(batcher) for i, amap in enumerate(amutmaps): # Note: amax(arr, axis=1) give greatest val for each row (nuc for nx4) max_avg_nuc = (amap == np.amax(amap, axis=1, keepdims=True)).astype(np.float32) seq = dbt.onehot_to_nuc(max_avg_nuc.T) alipanahi_mutmap_dir = self.save_dir + os.sep + 'alipanahi_mutmap_dir' if not os.path.exists(alipanahi_mutmap_dir): os.makedirs(alipanahi_mutmap_dir) save_fname = alipanahi_mutmap_dir+os.sep+'avg_batcher_mutmap_{}recs_class{}{}.png'.\ format(batcher.num_records,i,fsuffix) nucheatmap.nuc_heatmap(seq, amap.T, save_fig=save_fname)
def plot_mutmap(self, onehot_seq, label, save_fig): """ :param onehot_seq: nx4 matrix :param label: :returns: :rtype: """ seq = dbt.onehot_to_nuc(onehot_seq.T) mut_onehot = self.mutmap(onehot_seq, label) #print "mut_onehot",mut_onehot.shape #print mut_onehot return nucheatmap.nuc_heatmap(seq, mut_onehot, save_fig=save_fig)
def plot_alipanahi_mutmap(self, onehot_seq, label, save_fig): seq = dbt.onehot_to_nuc(onehot_seq.T) amut_onehot = self.alipanahi_mutmap(onehot_seq, label) nucheatmap.nuc_heatmap(seq, amut_onehot.T, save_fig=save_fig)