示例#1
0
def fg_inference(compile_fg):
    print('----------------------------------------------------------------')
    print('Weight inference')
    print('----------------------------------------------------------------')
    weight, variable, factor, ftv, domain_mask, n_edges = compile_fg
    fg = NumbSkull(
        n_inference_epoch=1000,
        n_learning_epoch=1000,
        stepsize=0.01,
        decay=0.95,
        reg_param=1e-6,
        regularization=2,
        truncation=10,
        quiet=(not False),
        verbose=False,
        learn_non_evidence=False,  # need to test
        sample_evidence=False,
        burn_in=10,
        nthreads=1)
    fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)
    fg.inference(out=True)
    for i in range(len(variable)):
        if fg.factorGraphs[0].marginals[i] > 0.5:
            variable[i]['initialValue'] = 1
        else:
            variable[i]['initialValue'] = 0

    weight_value = fg.factorGraphs[0].weight_value[0]
    return weight_value
示例#2
0
    def train(self,
              V,
              cardinality,
              L,
              L_offset,
              y=None,
              deps=(),
              init_acc=1.0,
              init_deps=0.0,
              init_class_prior=-1.0,
              epochs=100,
              step_size=None,
              decay=0.99,
              reg_param=0.1,
              reg_type=2,
              verbose=False,
              truncation=10,
              burn_in=50,
              timer=None):

        n_data = V.shape[0]
        step_size = step_size or 1.0 / n_data
        reg_param_scaled = reg_param / n_data
        # self._process_dependency_graph(L, deps)
        weight, variable, factor, ftv, domain_mask, n_edges = self._compile(
            V, cardinality, L, L_offset, y, deps, init_acc,
            init_deps)  # , init_deps, init_class_prior)

        fg = NumbSkull(n_inference_epoch=0,
                       n_learning_epoch=epochs,
                       stepsize=step_size,
                       decay=decay,
                       reg_param=reg_param_scaled,
                       regularization=reg_type,
                       truncation=truncation,
                       quiet=(not verbose),
                       verbose=verbose,
                       learn_non_evidence=True,
                       burn_in=burn_in)
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        if timer is not None:
            timer.start()
        fg.learning(out=False)
        if timer is not None:
            timer.end()

        self.weights = fg.factorGraphs[0].weight_value[0][:len(L)]
        self.dep_weights = fg.factorGraphs[0].weight_value[0][len(L):]
        self.lf_accuracy = 1. / (1. + np.exp(-self.weights[:len(L)]))
示例#3
0
    def marginals(self,
                  V,
                  cardinality,
                  L,
                  L_offset,
                  deps=(),
                  init_acc=1.0,
                  init_deps=1.0,
                  init_class_prior=-1.0,
                  epochs=100,
                  step_size=None,
                  decay=0.99,
                  verbose=False,
                  burn_in=50,
                  timer=None):
        if self.weights is None:
            raise ValueError(
                "Must fit model with train() before computing marginal probabilities."
            )

        y = None
        weight, variable, factor, ftv, domain_mask, n_edges = self._compile(
            V, cardinality, L, L_offset, y, deps, self.weights,
            self.dep_weights)

        fg = NumbSkull(n_inference_epoch=epochs,
                       n_learning_epoch=0,
                       stepsize=step_size,
                       decay=decay,
                       quiet=(not verbose),
                       verbose=verbose,
                       learn_non_evidence=True,
                       burn_in=burn_in,
                       sample_evidence=False)
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        fg.inference(out=False)
        marginals = fg.factorGraphs[0].marginals[:V.shape[0]]

        return marginals
示例#4
0
def fg_learning(compile_fg):
    print('----------------------------------------------------------------')
    print('Weight learning')
    print('----------------------------------------------------------------')
    weight, variable, factor, ftv, domain_mask, n_edges = compile_fg
    fg = NumbSkull(
        n_inference_epoch=1000,
        n_learning_epoch=1000,
        stepsize=0.01,
        decay=0.95,
        reg_param=1e-6,
        regularization=2,
        truncation=10,
        quiet=(not False),
        verbose=False,
        learn_non_evidence=False,  # need to test
        sample_evidence=False,
        burn_in=10,
        nthreads=1)
    fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)
    fg.learning(out=True)
    weight_value = fg.factorGraphs[0].weight_value[0]
    return weight_value
示例#5
0
 def train(self,
           L,
           y=None,
           deps=(),
           init_acc=1.0,
           epochs=100,
           step_size=None,
           decay=0.99,
           reg_param=0.1,
           reg_type=2,
           verbose=False,
           truncation=10,
           burn_in=50,
           timer=None):
     step_size = step_size or 1.0 / L.shape[0]
     reg_param_scaled = reg_param / L.shape[0]
     self._process_dependency_graph(L, deps)
     weight, variable, factor, ftv, domain_mask, n_edges = self._compile(
         L, y, init_acc)
     fg = NumbSkull(n_inference_epoch=0,
                    n_learning_epoch=epochs,
                    stepsize=step_size,
                    decay=decay,
                    reg_param=reg_param_scaled,
                    regularization=reg_type,
                    truncation=truncation,
                    quiet=(not verbose),
                    verbose=verbose,
                    learn_non_evidence=True,
                    burn_in=burn_in)
     fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)
     if timer is not None:
         timer.start()
     fg.learning(out=False)
     if timer is not None:
         timer.end()
     self._process_learned_weights(L, fg)
示例#6
0
    def train(self, L, deps=(), LF_acc_prior_weights=None,
        LF_acc_prior_weight_default=1, labels=None, label_prior_weight=5,
        init_deps=0.0, init_class_prior=-1.0, epochs=30, step_size=None, 
        decay=1.0, reg_param=0.1, reg_type=2, verbose=False, truncation=10, 
        burn_in=5, cardinality=None, timer=None, candidate_ranges=None, threads=1):
        """
        Fits the parameters of the model to a data set. By default, learns a
        conditionally independent model. Additional unary dependencies can be
        set to be included in the constructor. Additional pairwise and
        higher-order dependencies can be included as an argument.

        Results are stored as a member named weights, instance of
        snorkel.learning.gen_learning.GenerativeModelWeights.

        :param L: M x N csr_AnnotationMatrix-type label matrix, where there are 
            M candidates labeled by N labeling functions (LFs)
        :param deps: collection of dependencies to include in the model, each 
                     element is a tuple of the form 
                     (LF 1 index, LF 2 index, dependency type),
                     see snorkel.learning.constants
        :param LF_acc_prior_weights: An N-element list of prior weights for the
            LF accuracies (log scale)
        :param LF_acc_prior_weight_default: Default prior for the weight of each 
            LF accuracy; if LF_acc_prior_weights is unset, each LF will have 
            this accuracy prior weight (log scale)
        :param labels: Optional ground truth labels
        :param label_prior_weight: The prior probability that the ground truth 
            labels (if provided) are correct (log scale)
        :param init_deps: initial weight for additional dependencies, except
                          class prior (log scale)
        :param init_class_prior: initial class prior (in log scale), note only
                                 used if class_prior=True in constructor
        :param epochs: number of training epochs
        :param step_size: gradient step size, default is 1 / L.shape[0]
        :param decay: multiplicative decay of step size,
                      step_size_(t+1) = step_size_(t) * decay
        :param reg_param: regularization strength
        :param reg_type: 1 = L1 regularization, 2 = L2 regularization
        :param verbose: whether to write debugging info to stdout
        :param truncation: number of iterations between truncation step for L1
                           regularization
        :param burn_in: number of burn-in samples to take before beginning
                        learning
        :param cardinality: number of possible classes; by default is inferred
            from the label matrix L
        :param timer: stopwatch for profiling, must implement start() and end()
        :param candidate_ranges: Optionally, a list of M sets of integer values,
            representing the possible categorical values that each of the M
            candidates can take. If a label is outside of this range throws an
            error. If None, then each candidate can take any value from 0 to
            cardinality.
        :param threads: the number of threads to use for sampling. Default is 1.
        """
        m, n = L.shape
        step_size = step_size or 0.0001

        # Check to make sure matrix is int-valued
        element_type = type(L[0,0])
        # Note: Other simpler forms of this check often don't work; still not
        # sure why...
        if not issubclass(element_type, np.integer):
            raise ValueError("""Label matrix must have int-type elements, 
                but elements have type %s""" % element_type)

        # Automatically infer cardinality
        # Binary: Values in {-1, 0, 1} [Default]
        # Categorical: Values in {0, 1, ..., K}
        if cardinality is None:
            # If candidate_ranges is provided, use this to determine cardinality
            if candidate_ranges is not None:
                cardinality = max(map(max, candidate_ranges))
            else:
                # This is just an annoying hack for LIL sparse matrices...
                try:
                    lmax = L.max()
                except AttributeError:
                    lmax = L.tocoo().max()

                if lmax > 2:
                    cardinality = lmax
                elif lmax < 2:
                    cardinality = 2
                else:
                    raise ValueError(
                        "L.max() == %s, cannot infer cardinality." % lmax)
            print("Inferred cardinality: %s" % cardinality)
        self.cardinality = cardinality

        # Priors for LFs default to fixed prior value
        # NOTE: Setting default != 0.5 creates a (fixed) factor which increases
        # runtime (by ~0.5x that of a non-fixed factor)...
        if LF_acc_prior_weights is None:
            LF_acc_prior_weights = [LF_acc_prior_weight_default for _ in range(n)]
        else:
            LF_acc_prior_weights = list(copy(LF_acc_prior_weights))

        # LF weights are un-fixed
        is_fixed = [False for _ in range(n)]

        # If supervised labels are provided, add them as a fixed LF with prior
        # Note: For large L this column stack operation could be very
        # inefficient, can consider refactoring...
        if labels is not None:
            labels = labels.reshape(m, 1)
            L = sparse.hstack([L, labels])
            is_fixed.append(True)
            LF_acc_prior_weights.append(label_prior_weight)
            n += 1

        # Reduce overhead of tracking indices by converting L to a CSR sparse matrix.
        L = sparse.csr_matrix(L).copy()

        # If candidate_ranges is provided, remap the values of L using
        # candidate_ranges. This "scoped categorical" approach allows learning
        # and inference to be efficient even with very large cardinality, as
        # we only sample relevant values for each candidate. Also set
        # per-candidate cardinalities according to candidate_ranges if not None,
        # else as constant value.
        self.cardinalities = self.cardinality * np.ones(m, dtype=np.int64)
        self.candidate_ranges = candidate_ranges
        if self.candidate_ranges is not None:
            L, self.cardinalities, _ = self._remap_scoped_categoricals(L, 
                self.candidate_ranges)

        # Shuffle the data points, cardinalities, and candidate_ranges
        idxs = range(m)
        self.rng.shuffle(idxs)
        L = L[idxs, :]
        if candidate_ranges is not None:
            self.cardinalities = self.cardinalities[idxs]
            c_ranges_reshuffled = []
            for i in idxs:
                c_ranges_reshuffled.append(self.candidate_ranges[i])
            self.candidate_ranges = c_ranges_reshuffled

        # Compile factor graph
        self._process_dependency_graph(L, deps)
        weight, variable, factor, ftv, domain_mask, n_edges = self._compile(
            L, init_deps, init_class_prior, LF_acc_prior_weights, is_fixed, self.cardinalities)
        fg = NumbSkull(
            n_inference_epoch=0,
            n_learning_epoch=epochs, 
            stepsize=step_size,
            decay=decay,
            reg_param=reg_param,
            regularization=reg_type,
            truncation=truncation,
            quiet=(not verbose),
            verbose=verbose, 
            learn_non_evidence=True,
            burn_in=burn_in,
            nthreads=threads
        )
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        if timer is not None:
            timer.start()
        fg.learning(out=False)
        if timer is not None:
            timer.end()
        self._process_learned_weights(L, fg, LF_acc_prior_weights, is_fixed)

        # Store info from factor graph
        if self.candidate_ranges is not None:
            self.cardinality_for_stats = int(max(self.cardinalities))
        else:
            self.cardinality_for_stats = self.cardinality
        self.learned_weights = fg.factorGraphs[0].weight_value
        weight, variable, factor, ftv, domain_mask, n_edges =\
            self._compile(sparse.coo_matrix((1, n), L.dtype), init_deps,
                init_class_prior, LF_acc_prior_weights, is_fixed,
                [self.cardinality_for_stats])

        variable["isEvidence"] = False
        weight["isFixed"] = True
        weight["initialValue"] = fg.factorGraphs[0].weight_value

        fg.factorGraphs = []
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        self.fg = fg
        self.nlf = n
        self.cardinality = cardinality
示例#7
0
def generate_label_matrix(weights, m):
    # Compilation

    # Weights
    n_weights = 1 if weights.class_prior != 0.0 else 0

    n_weights += weights.n

    for optional_name in GenerativeModel.optional_names:
        for i in range(weights.n):
            if getattr(weights, optional_name)[i] != 0.0:
                n_weights += 1

    for dep_name in GenerativeModel.dep_names:
        for i in range(weights.n):
            for j in range(weights.n):
                if getattr(weights, dep_name)[i, j] != 0.0:
                    n_weights += 1

    weight = np.zeros(n_weights, Weight)
    for i in range(len(weight)):
        weight[i]['isFixed'] = True

    if weights.class_prior != 0.0:
        weight[0]['initialValue'] = np.float64(weights.class_prior)
        w_off = 1
    else:
        w_off = 0

    for i in range(weights.n):
        weight[w_off + i]['initialValue'] = np.float64(weights.lf_accuracy[i])
    w_off += weights.n

    for optional_name in GenerativeModel.optional_names:
        for i in range(weights.n):
            if getattr(weights, optional_name)[i] != 0.0:
                weight[w_off]['initialValue'] = np.float64(
                    getattr(weights, optional_name)[i])
                w_off += 1

    for dep_name in GenerativeModel.dep_names:
        for i in range(weights.n):
            for j in range(weights.n):
                if getattr(weights, dep_name)[i, j] != 0.0:
                    weight[w_off]['initialValue'] = np.float64(
                        getattr(weights, dep_name)[i, j])
                    w_off += 1

    # Variables
    variable = np.zeros(1 + weights.n, Variable)

    variable[0]['isEvidence'] = 0
    variable[0]['initialValue'] = 0
    variable[0]["dataType"] = 0
    variable[0]["cardinality"] = 2

    for i in range(weights.n):
        variable[1 + i]['isEvidence'] = 0
        variable[1 + i]['initialValue'] = 0
        variable[1 + i]["dataType"] = 0
        variable[1 + i]["cardinality"] = 3

    # Factors and FactorToVar
    n_edges = 1 if weights.class_prior != 0.0 else 0
    n_edges += 2 * weights.n
    for optional_name in GenerativeModel.optional_names:
        for i in range(weights.n):
            if getattr(weights, optional_name)[i] != 0.0:
                if optional_name == 'lf_prior' or optional_name == 'lf_propensity':
                    n_edges += 1
                elif optional_name == 'lf_class_propensity':
                    n_edges += 2
                else:
                    raise ValueError()
    for dep_name in GenerativeModel.dep_names:
        for i in range(weights.n):
            for j in range(weights.n):
                if getattr(weights, dep_name)[i, j] != 0.0:
                    if dep_name == 'dep_similar' or dep_name == 'dep_exclusive':
                        n_edges += 2
                    elif dep_name == 'dep_fixing' or dep_name == 'dep_reinforcing':
                        n_edges += 3
                    else:
                        raise ValueError()

    factor = np.zeros(n_weights, Factor)
    ftv = np.zeros(n_edges, FactorToVar)

    if weights.class_prior != 0.0:
        factor[0]["factorFunction"] = FACTORS["DP_GEN_CLASS_PRIOR"]
        factor[0]["weightId"] = 0
        factor[0]["featureValue"] = 1
        factor[0]["arity"] = 1
        factor[0]["ftv_offset"] = 0

        ftv[0]["vid"] = 0

        f_off = 1
        ftv_off = 1
    else:
        f_off = 0
        ftv_off = 0

    for i in range(weights.n):
        factor[f_off + i]["factorFunction"] = FACTORS["DP_GEN_LF_ACCURACY"]
        factor[f_off + i]["weightId"] = f_off + i
        factor[f_off + i]["featureValue"] = 1
        factor[f_off + i]["arity"] = 2
        factor[f_off + i]["ftv_offset"] = ftv_off + 2 * i

        ftv[ftv_off + 2 * i]["vid"] = 0
        ftv[ftv_off + 2 * i + 1]["vid"] = 1 + i
    f_off += weights.n
    ftv_off += 2 * weights.n

    for i in range(weights.n):
        if weights.lf_prior[i] != 0.0:
            factor[f_off]["factorFunction"] = FACTORS["DP_GEN_LF_PRIOR"]
            factor[f_off]["weightId"] = f_off
            factor[f_off]["featureValue"] = 1
            factor[f_off]["arity"] = 1
            factor[f_off]["ftv_offset"] = ftv_off

            ftv[ftv_off]["vid"] = 1 + i
            f_off += 1
            ftv_off += 1

    for i in range(weights.n):
        if weights.lf_propensity[i] != 0.0:
            factor[f_off]["factorFunction"] = FACTORS["DP_GEN_LF_PROPENSITY"]
            factor[f_off]["weightId"] = f_off
            factor[f_off]["featureValue"] = 1
            factor[f_off]["arity"] = 1
            factor[f_off]["ftv_offset"] = ftv_off

            ftv[ftv_off]["vid"] = 1 + i
            f_off += 1
            ftv_off += 1

    for i in range(weights.n):
        if weights.lf_class_propensity[i] != 0.0:
            factor[f_off]["factorFunction"] = FACTORS[
                "DP_GEN_LF_CLASS_PROPENSITY"]
            factor[f_off]["weightId"] = f_off
            factor[f_off]["featureValue"] = 1
            factor[f_off]["arity"] = 2
            factor[f_off]["ftv_offset"] = ftv_off

            ftv[ftv_off]["vid"] = 0
            ftv[ftv_off + 1]["vid"] = 1 + i

            f_off += 1
            ftv_off += 2

    for dep_name in GenerativeModel.dep_names:
        for i in range(weights.n):
            for j in range(weights.n):
                if getattr(weights, dep_name)[i, j] != 0.0:
                    if dep_name == 'dep_similar' or dep_name == 'dep_exclusive':
                        factor[f_off]["factorFunction"] = FACTORS[
                            "DP_GEN_DEP_SIMILAR"] if dep_name == 'dep_similar' else FACTORS[
                                "DP_GEN_DEP_EXCLUSIVE"]
                        factor[f_off]["weightId"] = f_off
                        factor[f_off]["featureValue"] = 1
                        factor[f_off]["arity"] = 2
                        factor[f_off]["ftv_offset"] = ftv_off

                        ftv[ftv_off]["vid"] = 1 + i
                        ftv[ftv_off + 1]["vid"] = 1 + j

                        f_off += 1
                        ftv_off += 2
                    elif dep_name == 'dep_fixing' or dep_name == 'dep_reinforcing':
                        factor[f_off]["factorFunction"] = FACTORS[
                            "DP_GEN_DEP_FIXING"] if dep_name == 'dep_fixing' else FACTORS[
                                "DP_GEN_DEP_REINFORCING"]

                        factor[f_off]["weightId"] = f_off
                        factor[f_off]["featureValue"] = 1
                        factor[f_off]["arity"] = 3
                        factor[f_off]["ftv_offset"] = ftv_off

                        ftv[ftv_off]["vid"] = 0
                        ftv[ftv_off + 1]["vid"] = 1 + i
                        ftv[ftv_off + 2]["vid"] = 1 + j

                        f_off += 1
                        ftv_off += 3
                    else:
                        raise ValueError()

    # Domain mask
    domain_mask = np.zeros(1 + weights.n, np.bool)

    # Instantiates factor graph
    ns = NumbSkull(n_inference_epoch=100, quiet=True)
    ns.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)
    fg = ns.getFactorGraph()

    y = np.ndarray((m, ), np.int64)
    L = sparse.lil_matrix((m, weights.n), dtype=np.int64)
    for i in range(m):
        fg.burnIn(10, False)
        y[i] = 1 if fg.var_value[0, 0] == 0 else -1
        for j in range(weights.n):
            if fg.var_value[0, 1 + j] != 2:
                L[i, j] = 1 if fg.var_value[0, 1 + j] == 0 else -1

    return y, L.tocsr()
ns_learing = NumbSkull(
    n_inference_epoch=1000,
    n_learning_epoch=1000,
    stepsize=0.01,
    decay=0.95,
    reg_param=1e-6,
    regularization=2,
    truncation=10,
    quiet=(not False),
    verbose=False,
    learn_non_evidence=False,  # need to test
    sample_evidence=False,
    burn_in=10,
    nthreads=1)
subgraph = weight, variable, factor, fmap, domain_mask, edges
ns_learing.loadFactorGraph(*subgraph)
# 因子图参数学习
ns_learing.learning()
# 因子图推理
# 参数学习完成后将weight的isfixed属性置为true
for index, w in enumerate(weight):
    w["isFixed"] = True
    w['initialValue'] = ns_learing.factorGraphs[0].weight[index][
        'initialValue']
ns_inference = NumbSkull(
    n_inference_epoch=1000,
    n_learning_epoch=1000,
    stepsize=0.001,
    decay=0.95,
    reg_param=1e-6,
    regularization=2,
示例#9
0
    def train(self, L, deps=(), LF_acc_prior_weights=None,
        LF_acc_prior_weight_default=1, labels=None, label_prior_weight=5,
        init_deps=0.0, init_class_prior=-1.0, epochs=30, step_size=None, 
        decay=1.0, reg_param=0.1, reg_type=2, verbose=False, truncation=10, 
        burn_in=5, cardinality=None, timer=None, candidate_ranges=None, threads=1):
        """
        Fits the parameters of the model to a data set. By default, learns a
        conditionally independent model. Additional unary dependencies can be
        set to be included in the constructor. Additional pairwise and
        higher-order dependencies can be included as an argument.

        Results are stored as a member named weights, instance of
        snorkel.learning.gen_learning.GenerativeModelWeights.

        :param L: M x N csr_AnnotationMatrix-type label matrix, where there are 
            M candidates labeled by N labeling functions (LFs)
        :param deps: collection of dependencies to include in the model, each 
                     element is a tuple of the form 
                     (LF 1 index, LF 2 index, dependency type),
                     see snorkel.learning.constants
        :param LF_acc_prior_weights: An N-element list of prior weights for the
            LF accuracies (log scale)
        :param LF_acc_prior_weight_default: Default prior for the weight of each 
            LF accuracy; if LF_acc_prior_weights is unset, each LF will have 
            this accuracy prior weight (log scale)
        :param labels: Optional ground truth labels
        :param label_prior_weight: The prior probability that the ground truth 
            labels (if provided) are correct (log scale)
        :param init_deps: initial weight for additional dependencies, except
                          class prior (log scale)
        :param init_class_prior: initial class prior (in log scale), note only
                                 used if class_prior=True in constructor
        :param epochs: number of training epochs
        :param step_size: gradient step size, default is 1 / L.shape[0]
        :param decay: multiplicative decay of step size,
                      step_size_(t+1) = step_size_(t) * decay
        :param reg_param: regularization strength
        :param reg_type: 1 = L1 regularization, 2 = L2 regularization
        :param verbose: whether to write debugging info to stdout
        :param truncation: number of iterations between truncation step for L1
                           regularization
        :param burn_in: number of burn-in samples to take before beginning
                        learning
        :param cardinality: number of possible classes; by default is inferred
            from the label matrix L
        :param timer: stopwatch for profiling, must implement start() and end()
        :param candidate_ranges: Optionally, a list of M sets of integer values,
            representing the possible categorical values that each of the M
            candidates can take. If a label is outside of this range throws an
            error. If None, then each candidate can take any value from 0 to
            cardinality.
        :param threads: the number of threads to use for sampling. Default is 1.
        """
        m, n = L.shape
        step_size = step_size or 0.0001

        # Check to make sure matrix is int-valued
        element_type = type(L[0,0])
        # Note: Other simpler forms of this check often don't work; still not
        # sure why...
        if not issubclass(element_type, np.integer):
            raise ValueError("""Label matrix must have int-type elements, 
                but elements have type %s""" % element_type)

        # Automatically infer cardinality
        # Binary: Values in {-1, 0, 1} [Default]
        # Categorical: Values in {0, 1, ..., K}
        if cardinality is None:
            # If candidate_ranges is provided, use this to determine cardinality
            if candidate_ranges is not None:
                cardinality = max(map(max, candidate_ranges))
            else:
                # This is just an annoying hack for LIL sparse matrices...
                try:
                    lmax = L.max()
                except AttributeError:
                    lmax = L.tocoo().max()

                if lmax > 2:
                    cardinality = lmax
                elif lmax < 2:
                    cardinality = 2
                else:
                    raise ValueError(
                        "L.max() == %s, cannot infer cardinality." % lmax)
            print("Inferred cardinality: %s" % cardinality)
        self.cardinality = cardinality

        # Priors for LFs default to fixed prior value
        # NOTE: Setting default != 0.5 creates a (fixed) factor which increases
        # runtime (by ~0.5x that of a non-fixed factor)...
        if LF_acc_prior_weights is None:
            LF_acc_prior_weights = [LF_acc_prior_weight_default for _ in range(n)]
        else:
            LF_acc_prior_weights = list(copy(LF_acc_prior_weights))

        # LF weights are un-fixed
        is_fixed = [False for _ in range(n)]

        # If supervised labels are provided, add them as a fixed LF with prior
        # Note: For large L this column stack operation could be very
        # inefficient, can consider refactoring...
        if labels is not None:
            labels = labels.reshape(m, 1)
            L = sparse.hstack([L, labels])
            is_fixed.append(True)
            LF_acc_prior_weights.append(label_prior_weight)
            n += 1

        # Reduce overhead of tracking indices by converting L to a CSR sparse matrix.
        L = sparse.csr_matrix(L).copy()

        # If candidate_ranges is provided, remap the values of L using
        # candidate_ranges. This "scoped categorical" approach allows learning
        # and inference to be efficient even with very large cardinality, as
        # we only sample relevant values for each candidate. Also set
        # per-candidate cardinalities according to candidate_ranges if not None,
        # else as constant value.
        self.cardinalities = self.cardinality * np.ones(m, dtype=np.int64)
        self.candidate_ranges = candidate_ranges
        if self.candidate_ranges is not None:
            L, self.cardinalities, _ = self._remap_scoped_categoricals(L, 
                self.candidate_ranges)

        # Shuffle the data points, cardinalities, and candidate_ranges
        idxs = self.rng.permutation(list(range(m)))
        L = L[idxs, :]
        if candidate_ranges is not None:
            self.cardinalities = self.cardinalities[idxs]
            c_ranges_reshuffled = []
            for i in idxs:
                c_ranges_reshuffled.append(self.candidate_ranges[i])
            self.candidate_ranges = c_ranges_reshuffled

        # Compile factor graph
        self._process_dependency_graph(L, deps)
        weight, variable, factor, ftv, domain_mask, n_edges = self._compile(
            L, init_deps, init_class_prior, LF_acc_prior_weights, is_fixed, self.cardinalities)
        fg = NumbSkull(
            n_inference_epoch=0,
            n_learning_epoch=epochs, 
            stepsize=step_size,
            decay=decay,
            reg_param=reg_param,
            regularization=reg_type,
            truncation=truncation,
            quiet=(not verbose),
            verbose=verbose, 
            learn_non_evidence=True,
            burn_in=burn_in,
            nthreads=threads
        )
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        if timer is not None:
            timer.start()
        fg.learning(out=False)
        if timer is not None:
            timer.end()
        self._process_learned_weights(L, fg, LF_acc_prior_weights, is_fixed)

        # Store info from factor graph
        if self.candidate_ranges is not None:
            self.cardinality_for_stats = int(max(self.cardinalities))
        else:
            self.cardinality_for_stats = self.cardinality
        self.learned_weights = fg.factorGraphs[0].weight_value
        weight, variable, factor, ftv, domain_mask, n_edges =\
            self._compile(sparse.coo_matrix((1, n), L.dtype), init_deps,
                init_class_prior, LF_acc_prior_weights, is_fixed,
                [self.cardinality_for_stats])

        variable["isEvidence"] = False
        weight["isFixed"] = True
        weight["initialValue"] = fg.factorGraphs[0].weight_value

        fg.factorGraphs = []
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        self.fg = fg
        self.nlf = n
        self.cardinality = cardinality
示例#10
0
    def train(self, L, deps=(), LF_acc_priors=None, LF_acc_features=None, LF_acc_prior_default=0.7, 
        labels=None, label_prior=0.99, init_deps=0.0,
        init_class_prior=-1.0, epochs=30, step_size=None, decay=1.0,
        reg_param=0.1, reg_type=2, verbose=False, truncation=10, burn_in=5,
        cardinality=None, timer=None):
        """
        Fits the parameters of the model to a data set. By default, learns a
        conditionally independent model with featurized accuracies. Additional unary dependencies can be
        set to be included in the constructor. Additional pairwise and
        higher-order dependencies can be included as an argument.

        Results are stored as a member named weights, instance of
        snorkel.learning.gen_learning.GenerativeModelWeights.

        :param L: M x N csr_AnnotationMatrix-type label matrix, where there are 
            M candidates labeled by N labeling functions (LFs)
        :param deps: collection of dependencies to include in the model, each 
                     element is a tuple of the form 
                     (LF 1 index, LF 2 index, dependency type),
                     see snorkel.learning.constants
        :param LF_acc_priors: An N-element list of prior probabilities for the
            LF accuracies
        :param LF_acc_features: An N-element list of features that determine
            the accuracy of its labeling function; its labeling function has a single
            feature; feature weights are coupled
        :param LF_acc_prior_default: Default prior probability for each LF 
            accuracy; if LF_acc_priors is unset, each LF will have this prior
        :param labels: Optional ground truth labels
        :param label_prior: The prior probability that the ground truth labels
            (if provided) are correct
        :param init_deps: initial weight for additional dependencies, except
                          class prior (in log scale)
        :param init_class_prior: initial class prior (in log scale), note only
                                 used if class_prior=True in constructor
        :param epochs: number of training epochs
        :param step_size: gradient step size, default is 1 / L.shape[0]
        :param decay: multiplicative decay of step size,
                      step_size_(t+1) = step_size_(t) * decay
        :param reg_param: regularization strength
        :param reg_type: 1 = L1 regularization, 2 = L2 regularization
        :param verbose: whether to write debugging info to stdout
        :param truncation: number of iterations between truncation step for L1
                           regularization
        :param burn_in: number of burn-in samples to take before beginning
                        learning
        :param cardinality: number of possible classes; by default is inferred
            from the label matrix L
        :param timer: stopwatch for profiling, must implement start() and end()
        """
        m, n = L.shape
        step_size = step_size or 0.0001
        reg_param_scaled = reg_param / L.shape[0]

        # Automatically infer cardinality
        # Binary: Values in {-1, 0, 1} [Default]
        # Categorical: Values in {0, 1, ..., K}
        if cardinality is None:
            # This is just an annoying hack for LIL sparse matrices...
            try:
                lmax = L.max()
            except AttributeError:
                lmax = L.tocoo().max()
            if lmax > 2:
                cardinality = lmax
            elif lmax < 2:
                cardinality = 2
            else:
                raise ValueError(
                    "L.max() == %s, cannot infer cardinality." % lmax)
            print("Inferred cardinality: %s" % cardinality)

        # Priors for LFs default to fixed prior value
        # NOTE: Setting default != 0.5 creates a (fixed) factor which increases
        # runtime (by ~0.5x that of a non-fixed factor)...
        if LF_acc_priors is None:
            LF_acc_priors = [LF_acc_prior_default for _ in range(n)]
        else:
            LF_acc_priors = list(copy(LF_acc_priors))
            
        if LF_acc_features is None:
            LF_acc_features = [str(i) for i in range(n)]
        else:
            LF_acc_features = list(copy(LF_acc_features))                

        # LF weights are un-fixed
        is_fixed = [False for _ in range(n)]

        # If supervised labels are provided, add them as a fixed LF with prior
        # Note: For large L this column stack operation could be very
        # inefficient, can consider refactoring...
        if labels is not None:
            labels = labels.reshape(m, 1)
            L = sparse.hstack([L.copy(), labels])
            is_fixed.append(True)
            LF_acc_priors.append(label_prior)
            n += 1

        # Shuffle the data points
        idxs = range(m)
        np.random.shuffle(idxs)
        if not isinstance(L, sparse.csr_matrix):
            L = sparse.csr_matrix(L)
        L = L[idxs, :]

        # Compile factor graph
        self._process_dependency_graph(L, deps)
        weight, variable, factor, ftv, domain_mask, n_edges, feature2WoffMap =\
            self._compile(L, init_deps, init_class_prior, LF_acc_priors, LF_acc_features,
                is_fixed, cardinality)
        fg = NumbSkull(
            n_inference_epoch=0,
            n_learning_epoch=epochs, 
            stepsize=step_size,
            decay=decay,
            reg_param=reg_param_scaled,
            regularization=reg_type,
            truncation=truncation,
            quiet=(not verbose),
            verbose=verbose, 
            learn_non_evidence=True,
            burn_in=burn_in
        )
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        if timer is not None:
            timer.start()
        fg.learning(out=False)
        if timer is not None:
            timer.end()
        self._process_learned_weights(L, fg, LF_acc_priors, LF_acc_features, feature2WoffMap, is_fixed)        

        # Store info from factor graph
        weight, variable, factor, ftv, domain_mask, n_edges, feature2WoffMap =\
            self._compile(sparse.coo_matrix((1, n), L.dtype), init_deps,
                init_class_prior, LF_acc_priors, LF_acc_features, is_fixed, cardinality)

        variable["isEvidence"] = False
        weight["isFixed"] = True
        weight["initialValue"] = fg.factorGraphs[0].weight_value

        fg.factorGraphs = []
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        self.fg = fg
        self.nlf = n
        self.cardinality = cardinality
示例#11
0
    def train(self,
              L,
              deps=(),
              LF_acc_priors=None,
              LF_acc_features=None,
              LF_acc_prior_default=0.7,
              labels=None,
              label_prior=0.99,
              init_deps=0.0,
              init_class_prior=-1.0,
              epochs=30,
              step_size=None,
              decay=1.0,
              reg_param=0.1,
              reg_type=2,
              verbose=False,
              truncation=10,
              burn_in=5,
              cardinality=None,
              timer=None):
        """
        Fits the parameters of the model to a data set. By default, learns a
        conditionally independent model with featurized accuracies. Additional unary dependencies can be
        set to be included in the constructor. Additional pairwise and
        higher-order dependencies can be included as an argument.

        Results are stored as a member named weights, instance of
        snorkel.learning.gen_learning.GenerativeModelWeights.

        :param L: M x N csr_AnnotationMatrix-type label matrix, where there are 
            M candidates labeled by N labeling functions (LFs)
        :param deps: collection of dependencies to include in the model, each 
                     element is a tuple of the form 
                     (LF 1 index, LF 2 index, dependency type),
                     see snorkel.learning.constants
        :param LF_acc_priors: An N-element list of prior probabilities for the
            LF accuracies
        :param LF_acc_features: An N-element list of features that determine
            the accuracy of its labeling function; its labeling function has a single
            feature; feature weights are coupled
        :param LF_acc_prior_default: Default prior probability for each LF 
            accuracy; if LF_acc_priors is unset, each LF will have this prior
        :param labels: Optional ground truth labels
        :param label_prior: The prior probability that the ground truth labels
            (if provided) are correct
        :param init_deps: initial weight for additional dependencies, except
                          class prior (in log scale)
        :param init_class_prior: initial class prior (in log scale), note only
                                 used if class_prior=True in constructor
        :param epochs: number of training epochs
        :param step_size: gradient step size, default is 1 / L.shape[0]
        :param decay: multiplicative decay of step size,
                      step_size_(t+1) = step_size_(t) * decay
        :param reg_param: regularization strength
        :param reg_type: 1 = L1 regularization, 2 = L2 regularization
        :param verbose: whether to write debugging info to stdout
        :param truncation: number of iterations between truncation step for L1
                           regularization
        :param burn_in: number of burn-in samples to take before beginning
                        learning
        :param cardinality: number of possible classes; by default is inferred
            from the label matrix L
        :param timer: stopwatch for profiling, must implement start() and end()
        """
        m, n = L.shape
        step_size = step_size or 0.0001
        reg_param_scaled = reg_param / L.shape[0]

        # Automatically infer cardinality
        # Binary: Values in {-1, 0, 1} [Default]
        # Categorical: Values in {0, 1, ..., K}
        if cardinality is None:
            # This is just an annoying hack for LIL sparse matrices...
            try:
                lmax = L.max()
            except AttributeError:
                lmax = L.tocoo().max()
            if lmax > 2:
                cardinality = lmax
            elif lmax < 2:
                cardinality = 2
            else:
                raise ValueError("L.max() == %s, cannot infer cardinality." %
                                 lmax)
            print("Inferred cardinality: %s" % cardinality)

        # Priors for LFs default to fixed prior value
        # NOTE: Setting default != 0.5 creates a (fixed) factor which increases
        # runtime (by ~0.5x that of a non-fixed factor)...
        if LF_acc_priors is None:
            LF_acc_priors = [LF_acc_prior_default for _ in range(n)]
        else:
            LF_acc_priors = list(copy(LF_acc_priors))

        if LF_acc_features is None:
            LF_acc_features = [str(i) for i in range(n)]
        else:
            LF_acc_features = list(copy(LF_acc_features))

        # LF weights are un-fixed
        is_fixed = [False for _ in range(n)]

        # If supervised labels are provided, add them as a fixed LF with prior
        # Note: For large L this column stack operation could be very
        # inefficient, can consider refactoring...
        if labels is not None:
            labels = labels.reshape(m, 1)
            L = sparse.hstack([L.copy(), labels])
            is_fixed.append(True)
            LF_acc_priors.append(label_prior)
            n += 1

        # Shuffle the data points
        idxs = range(m)
        np.random.shuffle(idxs)
        if not isinstance(L, sparse.csr_matrix):
            L = sparse.csr_matrix(L)
        L = L[idxs, :]

        # Compile factor graph
        self._process_dependency_graph(L, deps)
        weight, variable, factor, ftv, domain_mask, n_edges, feature2WoffMap =\
            self._compile(L, init_deps, init_class_prior, LF_acc_priors, LF_acc_features,
                is_fixed, cardinality)
        fg = NumbSkull(n_inference_epoch=0,
                       n_learning_epoch=epochs,
                       stepsize=step_size,
                       decay=decay,
                       reg_param=reg_param_scaled,
                       regularization=reg_type,
                       truncation=truncation,
                       quiet=(not verbose),
                       verbose=verbose,
                       learn_non_evidence=True,
                       burn_in=burn_in)
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        if timer is not None:
            timer.start()
        fg.learning(out=False)
        if timer is not None:
            timer.end()
        self._process_learned_weights(L, fg, LF_acc_priors, LF_acc_features,
                                      feature2WoffMap, is_fixed)

        # Store info from factor graph
        weight, variable, factor, ftv, domain_mask, n_edges, feature2WoffMap =\
            self._compile(sparse.coo_matrix((1, n), L.dtype), init_deps,
                init_class_prior, LF_acc_priors, LF_acc_features, is_fixed, cardinality)

        variable["isEvidence"] = False
        weight["isFixed"] = True
        weight["initialValue"] = fg.factorGraphs[0].weight_value

        fg.factorGraphs = []
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)

        self.fg = fg
        self.nlf = n
        self.cardinality = cardinality
示例#12
0
    def train(self,
              L,
              y=None,
              deps=(),
              init_acc=1.0,
              init_deps=1.0,
              init_class_prior=-1.0,
              epochs=10,
              step_size=None,
              decay=0.99,
              reg_param=0.1,
              reg_type=2,
              verbose=False,
              truncation=10,
              burn_in=5,
              timer=None):
        """
        Fits the parameters of the model to a data set. By default, learns a conditionally independent model.
        Additional unary dependencies can be set to be included in the constructor. Additional pairwise and higher-order
        dependencies can be included as an argument.

        Results are stored as a member named weights, instance of snorkel.learning.gen_learning.GenerativeModelWeights.

        :param L: labeling function output matrix
        :param y: optional ground truth labels
        :param deps: collection of dependencies to include in the model, each element is a tuple of the form
                     (LF 1 index, LF 2 index, dependency type), see snorkel.learning.constants
        :param init_acc: initial weight for accuracy dependencies (in log scale)
        :param init_deps: initial weight for additional dependencies, except class prior (in log scale)
        :param init_class_prior: initial class prior (in log scale), note only used if class_prior=True in constructor
        :param epochs: number of training epochs
        :param step_size: gradient step size, default is 1 / L.shape[0]
        :param decay: multiplicative decay of step size, step_size_(t+1) = step_size_(t) * decay
        :param reg_param: regularization strength
        :param reg_type: 1 = L1 regularization, 2 = L2 regularization
        :param verbose: whether to write debugging info to stdout
        :param truncation: number of iterations between truncation step for L1 regularization
        :param burn_in: number of burn-in samples to take before beginning learning
        :param timer: stopwatch for profiling, must implement start() and end()
        """

        step_size = step_size or 1.0 / L.shape[0]
        reg_param_scaled = reg_param / L.shape[0]
        self._process_dependency_graph(L, deps)
        weight, variable, factor, ftv, domain_mask, n_edges = self._compile(
            L, y, init_acc, init_deps, init_class_prior)
        fg = NumbSkull(n_inference_epoch=0,
                       n_learning_epoch=epochs,
                       stepsize=step_size,
                       decay=decay,
                       reg_param=reg_param_scaled,
                       regularization=reg_type,
                       truncation=truncation,
                       quiet=(not verbose),
                       verbose=verbose,
                       learn_non_evidence=True,
                       burn_in=burn_in)
        fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges)
        if timer is not None:
            timer.start()
        fg.learning(out=False)
        if timer is not None:
            timer.end()
        self._process_learned_weights(L, fg)