def _print_summary(method, order, x_values, scales):
    print(scales)
    header = 'method="{}", order={}, x_values={}:'.format(
        method, order, str(x_values))
    print(header)
    for n in scales:
        print('n={}, mean scale={:.2f}, median scale={:.2f}'.format(
            n, np.mean(scales[n]), np.median(scales[n])))

    print('Default scale with ' + header)
    for n in scales:
        print('n={}, scale={:.2f}'.format(n, default_scale(method, n, order)))
def benchmark(x=0.0001,
              dfun=None,
              fd=None,
              name='',
              scales=None,
              show_plot=True):

    if scales is None:
        scales = np.arange(1.0, 35, 0.25)

    n, method, order = fd.n, fd.method, fd.order

    if dfun is None:
        return dict(n=n,
                    order=order,
                    method=method,
                    fun=name,
                    error=np.nan,
                    scale=np.nan,
                    x=np.nan)

    relativ_errors = _compute_relative_errors(x, dfun, fd, scales)

    if not np.isfinite(relativ_errors).any():
        return dict(n=n,
                    order=order,
                    method=method,
                    fun=name,
                    error=np.nan,
                    scale=np.nan)
    if show_plot:
        txt = ['', "1'st", "2'nd", "3'rd", "4'th", "5'th", "6'th", "7th"
               ] + ["%d'th" % i for i in range(8, 25)]
        title = "The %s derivative using %s, order=%d" % (txt[n], method,
                                                          order)
        scale0 = default_scale(method, n, order)
        plot_error(scales, relativ_errors, scale0, title, label=name)

    i = np.nanargmin(relativ_errors)
    error = float('{:.3g}'.format(relativ_errors[i]))
    return dict(n=n,
                order=order,
                method=method,
                fun=name,
                error=error,
                scale=scales[i],
                x=x)
示例#3
0
 def test_default_scale():
     for method, scale in zip(
         ['complex', 'central', 'forward', 'backward', 'multicomplex'],
         [1.35, 2.5, 2.5, 2.5, 1.35]):
         assert_allclose(scale, default_scale(method, n=1))
def _example3(x=0.0001,
              fun_name='cos',
              epsilon=None,
              method='central',
              scale=None,
              n=1,
              order=2):
    fun0, dfun = get_function(fun_name, n)
    if dfun is None:
        return dict(n=n,
                    order=order,
                    method=method,
                    fun=fun_name,
                    error=np.nan,
                    scale=np.nan)
    fd = Derivative(fun0, step=epsilon, method=method, n=n, order=order)
    t = []
    scales = np.arange(1.0, 35, 0.25)
    for scale in scales:
        fd.step.scale = scale
        try:
            val = fd(x)
        except Exception:
            val = np.nan
        t.append(val)
    t = np.array(t)
    tt = dfun(x)
    relativ_error = np.abs(t - tt) / (np.maximum(np.abs(tt), 1)) + 1e-16

    #     weights = np.ones((3,))/3
    #     relativ_error = convolve1d(relativ_error, weights)  # smooth curve

    if np.isnan(relativ_error).all():
        return dict(n=n,
                    order=order,
                    method=method,
                    fun=fun_name,
                    error=np.nan,
                    scale=np.nan)
    if True:  # False:  #
        plt.semilogy(scales, relativ_error, label=fun_name)
        plt.vlines(default_scale(fd.method, n, order),
                   np.nanmin(relativ_error), 1)
        plt.xlabel('scales')
        plt.ylabel('Relative error')
        txt = ['', "1'st", "2'nd", "3'rd", "4'th", "5'th", "6'th", "7th"
               ] + ["%d'th" % i for i in range(8, 25)]

        plt.title("The %s derivative using %s, order=%d" %
                  (txt[n], method, order))
        plt.legend(frameon=False, framealpha=0.5)
        plt.axis([min(scales), max(scales), np.nanmin(relativ_error), 1])
        # plt.figure()
        # plt.show('hold')
    i = np.nanargmin(relativ_error)
    return dict(n=n,
                order=order,
                method=method,
                fun=fun_name,
                error=relativ_error[i],
                scale=scales[i])
                              order=order)
                print(r)
                scale_n = scales.setdefault(n, [])
                scale = r['scale']
                if np.isfinite(scale):
                    scale_n.append(scale)
        plt.vlines(np.mean(scale_n), 1e-12, 1, 'r', linewidth=3)

    print(scales)
    print('method={}, order={}'.format(method, order))
    for n in scales:
        print('n={}, scale={}'.format(n, np.mean(scales[n])))

    print('Default scale')
    for n in scales:
        print('n={}, scale={}'.format(n, default_scale(method, n, order)))

    plt.show('hold')

# method=complex, order=2
# n=1, scale=1.05188679245
# n=2, scale=5.55424528302
# n=3, scale=8.34669811321
# n=4, scale=9.08072916667
# n=5, scale=10.1958333333
# n=6, scale=9.13020833333
# n=7, scale=13.859375
# n=8, scale=14.125
# n=9, scale=12.8385416667
# n=10, scale=14.5416666667
示例#6
0
 def test_default_scale():
     for method, scale in zip(['complex', 'central', 'forward', 'backward',
                               'multicomplex'],
                              [1.35, 2.5, 2.5, 2.5, 1.35]):
         np.testing.assert_allclose(scale, default_scale(method, n=1))