示例#1
0
def hist(y, bins=10, normed=0):
    """
    Return the histogram of y with bins equally sized bins.  If bins
    is an array, use the bins.  Return value is
    (n,x) where n is the count for each bin in x

    If normed is False, return the counts in the first element of the
    return tuple.  If normed is True, return the probability density
    n/(len(y)*dbin)

    If y has rank>1, it will be raveled
    Credits: the Numeric 22 documentation

    

    """
    y = asarray(y)
    if len(y.shape)>1: y = ravel(y)

    if not iterable(bins):       
        ymin, ymax = min(y), max(y)
        if ymin==ymax:
            ymin -= 0.5
            ymax += 0.5
        bins = linspace(ymin, ymax, bins)

    n = searchsorted(sort(y), bins)
    n = diff(concatenate([n, [len(y)]]))
    if normed:
       db = bins[1]-bins[0]
       return 1/(len(y)*db)*n, bins
    else:
       return n, bins
示例#2
0
def hist(y, bins=10, normed=0):
    """
    Return the histogram of y with bins equally sized bins.  If bins
    is an array, use the bins.  Return value is
    (n,x) where n is the count for each bin in x

    If normed is False, return the counts in the first element of the
    return tuple.  If normed is True, return the probability density
    n/(len(y)*dbin)

    If y has rank>1, it will be raveled
    Credits: the Numeric 22 documentation

    

    """
    y = asarray(y)
    if len(y.shape) > 1: y = ravel(y)

    if not iterable(bins):
        ymin, ymax = min(y), max(y)
        if ymin == ymax:
            ymin -= 0.5
            ymax += 0.5
        bins = linspace(ymin, ymax, bins)

    n = searchsorted(sort(y), bins)
    n = diff(concatenate([n, [len(y)]]))
    if normed:
        db = bins[1] - bins[0]
        return 1 / (len(y) * db) * n, bins
    else:
        return n, bins
示例#3
0
    def _set_clip(self):

        if not self._useDataClipping: return
        #self._logcache = None

        try:
            self._xmin, self._xmax
        except AttributeError:
            indx = arange(len(self._x))
        else:
            if not hasattr(self, '_xsorted'):
                self._xsorted = self._is_sorted(self._x)
            if len(self._x) == 1:
                indx = [0]
            elif self._xsorted:
                # for really long signals, if we know they are sorted
                # on x we can save a lot of time using search sorted
                # since the alternative approach requires 3 O(len(x) ) ops
                indMin, indMax = searchsorted(self._x,
                                              array([self._xmin, self._xmax]))
                indMin = max(0, indMin - 1)
                indMax = min(indMax + 1, len(self._x))
                skip = 0
                if self._lod:
                    # if level of detail is on, decimate the data
                    # based on pixel width
                    raise NotImplementedError('LOD deprecated')
                    l, b, w, h = self.get_window_extent().get_bounds()
                    skip = int((indMax - indMin) / w)
                if skip > 0: indx = arange(indMin, indMax, skip)
                else: indx = arange(indMin, indMax)
            else:
                indx = nonzero(
                    logical_and(self._x >= self._xmin, self._x <= self._xmax))

        self._xc = take(self._x, indx)
        self._yc = take(self._y, indx)

        # y data clipping for connected lines can introduce horizontal
        # line artifacts near the clip region.  If you really need y
        # clipping for efficiency, consider using plot(y,x) instead.
        if (self._yc.shape == self._xc.shape and self._linestyle is None):
            try:
                self._ymin, self._ymax
            except AttributeError:
                indy = arange(len(self._yc))
            else:
                indy = nonzero(
                    logical_and(self._yc >= self._ymin,
                                self._yc <= self._ymax))
        else:
            indy = arange(len(self._yc))

        self._xc = take(self._xc, indy)
        self._yc = take(self._yc, indy)
示例#4
0
    def _set_clip(self):

        if not self._useDataClipping:
            return
        # self._logcache = None

        try:
            self._xmin, self._xmax
        except AttributeError:
            indx = arange(len(self._x))
        else:
            if not hasattr(self, "_xsorted"):
                self._xsorted = self._is_sorted(self._x)
            if len(self._x) == 1:
                indx = [0]
            elif self._xsorted:
                # for really long signals, if we know they are sorted
                # on x we can save a lot of time using search sorted
                # since the alternative approach requires 3 O(len(x) ) ops
                indMin, indMax = searchsorted(self._x, array([self._xmin, self._xmax]))
                indMin = max(0, indMin - 1)
                indMax = min(indMax + 1, len(self._x))
                skip = 0
                if self._lod:
                    # if level of detail is on, decimate the data
                    # based on pixel width
                    raise NotImplementedError("LOD deprecated")
                    l, b, w, h = self.get_window_extent().get_bounds()
                    skip = int((indMax - indMin) / w)
                if skip > 0:
                    indx = arange(indMin, indMax, skip)
                else:
                    indx = arange(indMin, indMax)
            else:
                indx = nonzero(logical_and(self._x >= self._xmin, self._x <= self._xmax))

        self._xc = take(self._x, indx)
        self._yc = take(self._y, indx)

        # y data clipping for connected lines can introduce horizontal
        # line artifacts near the clip region.  If you really need y
        # clipping for efficiency, consider using plot(y,x) instead.
        if self._yc.shape == self._xc.shape and self._linestyle is None:
            try:
                self._ymin, self._ymax
            except AttributeError:
                indy = arange(len(self._yc))
            else:
                indy = nonzero(logical_and(self._yc >= self._ymin, self._yc <= self._ymax))
        else:
            indy = arange(len(self._yc))

        self._xc = take(self._xc, indy)
        self._yc = take(self._yc, indy)
def makeMappingArray(N, data):
    """Create an N-element 1-d lookup table

    data represented by a list of x,y0,y1 mapping correspondences.
    Each element in this list represents how a value between 0 and 1
    (inclusive) represented by x is mapped to a corresponding value
    between 0 and 1 (inclusive). The two values of y are to allow
    for discontinuous mapping functions (say as might be found in a
    sawtooth) where y0 represents the value of y for values of x
    <= to that given, and y1 is the value to be used for x > than
    that given). The list must start with x=0, end with x=1, and
    all values of x must be in increasing order. Values between
    the given mapping points are determined by simple linear interpolation.

    The function returns an array "result" where result[x*(N-1)]
    gives the closest value for values of x between 0 and 1.
    """
    try:
        adata = array(data)
    except:
        raise TypeError("data must be convertable to an array")
    shape = adata.shape
    if len(shape) != 2 and shape[1] != 3:
        raise ValueError("data must be nx3 format")

    x  = adata[:,0]
    y0 = adata[:,1]
    y1 = adata[:,2]

    if x[0] != 0. or x[-1] != 1.0:
        raise ValueError(
           "data mapping points must start with x=0. and end with x=1")
    if sometrue(sort(x)-x):
        raise ValueError(
           "data mapping points must have x in increasing order")
    # begin generation of lookup table
    x = x * (N-1)
    lut = zeros((N,), Float)
    xind = arange(float(N))
    ind = searchsorted(x, xind)[1:-1]

    lut[1:-1] = ( divide(xind[1:-1] - take(x,ind-1),
                         take(x,ind)-take(x,ind-1) )
                  *(take(y0,ind)-take(y1,ind-1)) + take(y1,ind-1))
    lut[0] = y1[0]
    lut[-1] = y0[-1]
    # ensure that the lut is confined to values between 0 and 1 by clipping it
    clip(lut, 0.0, 1.0)
    #lut = where(lut > 1., 1., lut)
    #lut = where(lut < 0., 0., lut)
    return lut
示例#6
0
def makeMappingArray(N, data):
    """Create an N-element 1-d lookup table
    
    data represented by a list of x,y0,y1 mapping correspondences.
    Each element in this list represents how a value between 0 and 1
    (inclusive) represented by x is mapped to a corresponding value
    between 0 and 1 (inclusive). The two values of y are to allow 
    for discontinuous mapping functions (say as might be found in a
    sawtooth) where y0 represents the value of y for values of x
    <= to that given, and y1 is the value to be used for x > than
    that given). The list must start with x=0, end with x=1, and 
    all values of x must be in increasing order. Values between
    the given mapping points are determined by simple linear interpolation.
    
    The function returns an array "result" where result[x*(N-1)]
    gives the closest value for values of x between 0 and 1.
    """
    try:
        adata = array(data)
    except:
        raise TypeError("data must be convertable to an array")
    shape = adata.shape
    if len(shape) != 2 and shape[1] != 3:
        raise ValueError("data must be nx3 format")

    x  = adata[:,0]
    y0 = adata[:,1]
    y1 = adata[:,2]

    if x[0] != 0. or x[-1] != 1.0:
        raise ValueError(
           "data mapping points must start with x=0. and end with x=1")
    if sometrue(sort(x)-x):
        raise ValueError(
           "data mapping points must have x in increasing order")
    # begin generation of lookup table
    x = x * (N-1)
    lut = zeros((N,), Float)
    xind = arange(float(N))
    ind = searchsorted(x, xind)[1:-1]
    
    lut[1:-1] = ( divide(xind[1:-1] - take(x,ind-1),
                         take(x,ind)-take(x,ind-1) )
                  *(take(y0,ind)-take(y1,ind-1)) + take(y1,ind-1))
    lut[0] = y1[0]
    lut[-1] = y0[-1]
    # ensure that the lut is confined to values between 0 and 1 by clipping it
    lut = where(lut > 1., 1., lut)
    lut = where(lut < 0., 0., lut)
    return lut