示例#1
0
def cv_warning(model, data, tournament='bernie', kfold=5, nsamples=100):
    "Hold out a sample of eras not rows when doing cross validation."

    data = data['train']
    results_cve = pd.DataFrame()
    results_cv = pd.DataFrame()

    for i in range(nsamples):

        # cv across eras
        cve = nx.CVSplitter(data, kfold=kfold, seed=i)
        prediction = nx.run(model, cve, tournament, verbosity=0)
        df = prediction.performance(data, tournament)
        results_cve = results_cve.append(df, ignore_index=True)

        # cv ignoring eras but y balanced
        cv = nx.IgnoreEraCVSplitter(data,
                                    tournament=tournament,
                                    kfold=kfold,
                                    seed=i)
        prediction = nx.run(model, cv, tournament, verbosity=0)
        df = prediction.performance(data, tournament)
        results_cv = results_cv.append(df, ignore_index=True)

        # display results
        rcve = results_cve.mean(axis=0)
        rcv = results_cv.mean(axis=0)
        rcve.name = 'cve'
        rcv.name = 'cv'
        r = pd.concat([rcve, rcv], axis=1)
        print("\n{} runs".format(i + 1))
        print(r)
示例#2
0
def test_splitter_overlap():
    "prediction data should not overlap"
    d = nx.play_data()
    splitters = [
        nx.TournamentSplitter(d),
        nx.ValidationSplitter(d),
        nx.CheatSplitter(d),
        nx.CVSplitter(d),
        nx.IgnoreEraCVSplitter(d),
        nx.SplitSplitter(d, fit_fraction=0.5)
    ]
    for splitter in splitters:
        predict_ids = []
        for dfit, dpredict in splitter:
            predict_ids.extend(dpredict.ids.tolist())
        ok_(len(predict_ids) == len(set(predict_ids)), "ids overlap")
示例#3
0
def test_splitter_reset():
    "splitter reset should not change results"
    d = nx.play_data()
    splitters = [
        nx.TournamentSplitter(d),
        nx.ValidationSplitter(d),
        nx.CheatSplitter(d),
        nx.CVSplitter(d),
        nx.IgnoreEraCVSplitter(d),
        nx.SplitSplitter(d, fit_fraction=0.5)
    ]
    for splitter in splitters:
        ftups = [[], []]
        ptups = [[], []]
        for i in range(2):
            for dfit, dpredict in splitter:
                ftups[i].append(dfit)
                ptups[i].append(dpredict)
            splitter.reset()
        ok_(ftups[0] == ftups[1], "splitter reset changed fit split")
        ok_(ptups[0] == ptups[1], "splitter reset changed predict split")
示例#4
0
def cv_warning(data, nsamples=100):

    model = nx.logistic()

    for i in range(nsamples):

        report = nx.Report()

        # cv across eras
        cve = nx.CVSplitter(data, seed=i)
        prediction = nx.run(model, cve, verbosity=0)
        report.append_prediction(prediction, 'cve')

        # cv ignoring eras but y balanced
        cv = nx.IgnoreEraCVSplitter(data, seed=i)
        prediction = nx.run(model, cv, verbosity=0)
        report.append_prediction(prediction, 'cv')

        # save performance results
        df = report.performance_df(data)
        cols = df.columns.tolist()
        cols[-1] = 'cv_type'
        df.columns = cols
        if i == 0:
            results = df
        else:
            results = results.append(df, ignore_index=True)

        # display results
        rcve = results[results.cv_type == 'cve'].mean(axis=0)
        rcv = results[results.cv_type == 'cv'].mean(axis=0)
        rcve.name = 'cve'
        rcv.name = 'cv'
        r = pd.concat([rcve, rcv], axis=1)
        print("\n{} runs".format(i+1))
        print(r)