示例#1
0
def eig(a):
    """
    Compute eigenvalues and right eigenvectors of an array.

    Parameters
    ----------
    a : array_like, shape (M, M)
        A complex or real 2-D array.

    Returns
    -------
    w : ndarray, shape (M,)
        The eigenvalues, each repeated according to its multiplicity.
        The eigenvalues are not necessarily ordered, nor are they
        necessarily real for real matrices.
    v : ndarray, shape (M, M)
        The normalized eigenvector corresponding to the eigenvalue ``w[i]`` is
        the column ``v[:,i]``.

    Raises
    ------
    LinAlgError
        If the eigenvalue computation does not converge.

    See Also
    --------
    eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
    eig : eigenvalues and right eigenvectors for non-symmetric arrays
    eigvals : eigenvalues of non-symmetric array.

    Notes
    -----
    This is a simple interface to the LAPACK routines dgeev and zgeev
    that compute the eigenvalues and eigenvectors of general real and
    complex arrays respectively.

    The number `w` is an eigenvalue of a if there exists a vector `v`
    satisfying the equation ``dot(a,v) = w*v``. Alternately, if `w` is
    a root of the characteristic equation ``det(a - w[i]*I) = 0``, where
    `det` is the determinant and `I` is the identity matrix. The arrays
    `a`, `w`, and `v` satisfy the equation ``dot(a,v[i]) = w[i]*v[:,i]``.

    The array `v` of eigenvectors may not be of maximum rank, that is, some
    of the columns may be dependent, although roundoff error may
    obscure that fact. If the eigenvalues are all different, then theoretically
    the eigenvectors are independent. Likewise, the matrix of eigenvectors
    is unitary if the matrix `a` is normal, i.e., if
    ``dot(a, a.H) = dot(a.H, a)``.

    The left and right eigenvectors are not necessarily the (Hermitian)
    transposes of each other.

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    _assertFinite(a)
    a, t, result_t = _convertarray(a) # convert to double or cdouble type
    real_t = _linalgRealType(t)
    n = a.shape[0]
    dummy = zeros((1,), t)
    if isComplexType(t):
        # Complex routines take different arguments
        lapack_routine = lapack_lite.zgeev
        w = zeros((n,), t)
        v = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork,), t)
        rwork = zeros((2*n,), real_t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n,), t)
        wi = zeros((n,), t)
        vr = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, lwork, 0)
        if all(wi == 0.0):
            w = wr
            v = vr
            result_t = _realType(result_t)
        else:
            w = wr+1j*wi
            v = array(vr, w.dtype)
            ind = flatnonzero(wi != 0.0)      # indices of complex e-vals
            for i in range(len(ind)/2):
                v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]]
                v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]]
            result_t = _complexType(result_t)

    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    vt = v.transpose().astype(result_t)
    return w.astype(result_t), wrap(vt)
示例#2
0
def eig(a):
    """Eigenvalues and right eigenvectors of a general matrix.

    A simple interface to the LAPACK routines dgeev and zgeev that compute the
    eigenvalues and eigenvectors of general real and complex arrays
    respectively.

    :Parameters:

        a : 2-d array
            A complex or real 2-d array whose eigenvalues and eigenvectors
            will be computed.

    :Returns:

        w : 1-d double or complex array
            The eigenvalues. The eigenvalues are not necessarily ordered, nor
            are they necessarily real for real matrices.

        v : 2-d double or complex double array.
            The normalized eigenvector corresponding to the eigenvalue w[i] is
            the column v[:,i].

    :SeeAlso:

        - eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
        - eig : eigenvalues and right eigenvectors for non-symmetric arrays
        - eigvals : eigenvalues of non-symmetric array.

    :Notes:
    -------

        The number w is an eigenvalue of a if there exists a vector v
        satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
        the characteristic equation det(a - w[i]*I) = 0, where det is the
        determinant and I is the identity matrix. The arrays a, w, and v
        satisfy the equation dot(a,v[i]) = w[i]*v[:,i].

        The array v of eigenvectors may not be of maximum rank, that is, some
        of the columns may be dependent, although roundoff error may obscure
        that fact. If the eigenvalues are all different, then theoretically the
        eigenvectors are independent. Likewise, the matrix of eigenvectors is
        unitary if the matrix a is normal, i.e., if dot(a, a.H) = dot(a.H, a).

        The left and right eigenvectors are not necessarily the (Hemitian)
        transposes of each other.

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    _assertFinite(a)
    a, t, result_t = _convertarray(a)  # convert to double or cdouble type
    real_t = _linalgRealType(t)
    n = a.shape[0]
    dummy = zeros((1, ), t)
    if isComplexType(t):
        # Complex routines take different arguments
        lapack_routine = lapack_lite.zgeev
        w = zeros((n, ), t)
        v = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork, ), t)
        rwork = zeros((2 * n, ), real_t)
        results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work,
                                 -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork, ), t)
        results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work,
                                 lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n, ), t)
        wi = zeros((n, ), t)
        vr = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork, ), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n,
                                 work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork, ), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n,
                                 work, lwork, 0)
        if all(wi == 0.0):
            w = wr
            v = vr
            result_t = _realType(result_t)
        else:
            w = wr + 1j * wi
            v = array(vr, w.dtype)
            ind = flatnonzero(wi != 0.0)  # indices of complex e-vals
            for i in range(len(ind) / 2):
                v[ind[2 * i]] = vr[ind[2 * i]] + 1j * vr[ind[2 * i + 1]]
                v[ind[2 * i + 1]] = vr[ind[2 * i]] - 1j * vr[ind[2 * i + 1]]
            result_t = _complexType(result_t)

    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    vt = v.transpose().astype(result_t)
    return w.astype(result_t), wrap(vt)
示例#3
0
def eig(a):
    """
    Compute eigenvalues and right eigenvectors of an array.

    Parameters
    ----------
    a : array_like, shape (M, M)
        A complex or real 2-D array.

    Returns
    -------
    w : ndarray, shape (M,)
        The eigenvalues, each repeated according to its multiplicity.
        The eigenvalues are not necessarily ordered, nor are they
        necessarily real for real matrices.
    v : ndarray, shape (M, M)
        The normalized eigenvector corresponding to the eigenvalue ``w[i]`` is
        the column ``v[:,i]``.

    Raises
    ------
    LinAlgError
        If the eigenvalue computation does not converge.

    See Also
    --------
    eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
    eig : eigenvalues and right eigenvectors for non-symmetric arrays
    eigvals : eigenvalues of non-symmetric array.

    Notes
    -----
    This is a simple interface to the LAPACK routines dgeev and zgeev
    that compute the eigenvalues and eigenvectors of general real and
    complex arrays respectively.

    The number `w` is an eigenvalue of a if there exists a vector `v`
    satisfying the equation ``dot(a,v) = w*v``. Alternately, if `w` is
    a root of the characteristic equation ``det(a - w[i]*I) = 0``, where
    `det` is the determinant and `I` is the identity matrix. The arrays
    `a`, `w`, and `v` satisfy the equation ``dot(a,v[i]) = w[i]*v[:,i]``.

    The array `v` of eigenvectors may not be of maximum rank, that is, some
    of the columns may be dependent, although roundoff error may
    obscure that fact. If the eigenvalues are all different, then theoretically
    the eigenvectors are independent. Likewise, the matrix of eigenvectors
    is unitary if the matrix `a` is normal, i.e., if
    ``dot(a, a.H) = dot(a.H, a)``.

    The left and right eigenvectors are not necessarily the (Hermitian)
    transposes of each other.

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    _assertFinite(a)
    a, t, result_t = _convertarray(a)  # convert to double or cdouble type
    real_t = _linalgRealType(t)
    n = a.shape[0]
    dummy = zeros((1, ), t)
    if isComplexType(t):
        # Complex routines take different arguments
        lapack_routine = lapack_lite.zgeev
        w = zeros((n, ), t)
        v = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork, ), t)
        rwork = zeros((2 * n, ), real_t)
        results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work,
                                 -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork, ), t)
        results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work,
                                 lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n, ), t)
        wi = zeros((n, ), t)
        vr = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork, ), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n,
                                 work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork, ), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n,
                                 work, lwork, 0)
        if all(wi == 0.0):
            w = wr
            v = vr
            result_t = _realType(result_t)
        else:
            w = wr + 1j * wi
            v = array(vr, w.dtype)
            ind = flatnonzero(wi != 0.0)  # indices of complex e-vals
            for i in range(len(ind) / 2):
                v[ind[2 * i]] = vr[ind[2 * i]] + 1j * vr[ind[2 * i + 1]]
                v[ind[2 * i + 1]] = vr[ind[2 * i]] - 1j * vr[ind[2 * i + 1]]
            result_t = _complexType(result_t)

    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    vt = v.transpose().astype(result_t)
    return w.astype(result_t), wrap(vt)
示例#4
0
def eig(a):
    """Eigenvalues and right eigenvectors of a general matrix.

    A simple interface to the LAPACK routines dgeev and zgeev that compute the
    eigenvalues and eigenvectors of general real and complex arrays
    respectively.

    :Parameters:

        a : 2-d array
            A complex or real 2-d array whose eigenvalues and eigenvectors
            will be computed.

    :Returns:

        w : 1-d double or complex array
            The eigenvalues. The eigenvalues are not necessarily ordered, nor
            are they necessarily real for real matrices.

        v : 2-d double or complex double array.
            The normalized eigenvector corresponding to the eigenvalue w[i] is
            the column v[:,i].

    :SeeAlso:

        - eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
        - eig : eigenvalues and right eigenvectors for non-symmetric arrays
        - eigvals : eigenvalues of non-symmetric array.

    :Notes:
    -------

        The number w is an eigenvalue of a if there exists a vector v
        satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
        the characteristic equation det(a - w[i]*I) = 0, where det is the
        determinant and I is the identity matrix. The arrays a, w, and v
        satisfy the equation dot(a,v[i]) = w[i]*v[:,i].

        The array v of eigenvectors may not be of maximum rank, that is, some
        of the columns may be dependent, although roundoff error may obscure
        that fact. If the eigenvalues are all different, then theoretically the
        eigenvectors are independent. Likewise, the matrix of eigenvectors is
        unitary if the matrix a is normal, i.e., if dot(a, a.H) = dot(a.H, a).

        The left and right eigenvectors are not necessarily the (Hemitian)
        transposes of each other.

    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    _assertFinite(a)
    a, t, result_t = _convertarray(a) # convert to double or cdouble type
    real_t = _linalgRealType(t)
    n = a.shape[0]
    dummy = zeros((1,), t)
    if isComplexType(t):
        # Complex routines take different arguments
        lapack_routine = lapack_lite.zgeev
        w = zeros((n,), t)
        v = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork,), t)
        rwork = zeros((2*n,), real_t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n,), t)
        wi = zeros((n,), t)
        vr = zeros((n, n), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, lwork, 0)
        if all(wi == 0.0):
            w = wr
            v = vr
            result_t = _realType(result_t)
        else:
            w = wr+1j*wi
            v = array(vr, w.dtype)
            ind = flatnonzero(wi != 0.0)      # indices of complex e-vals
            for i in range(len(ind)/2):
                v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]]
                v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]]
            result_t = _complexType(result_t)

    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    vt = v.transpose().astype(result_t)
    return w.astype(result_t), wrap(vt)