示例#1
0
def plot_dft_abs_phase(signal: np.array.__class__,
                       frequency_discretization=1,
                       is_in_db=False):
    spectrum = fftshift(fft(signal))

    fft_frequencies = fftshift(
        fftfreq(signal.shape[0], 1 / frequency_discretization))

    abs_values = np.abs(spectrum)
    if is_in_db:
        abs_values = power_samples_in_db(abs_values)

    plt.figure()

    plt.subplot(211)
    plt.plot(fft_frequencies, abs_values, color='b')
    plt.ylabel('Amplitude [dB]', color='b')
    plt.xlabel('Frequency')
    plt.grid()

    plt.subplot(212)
    plt.plot(fft_frequencies, np.angle(spectrum), color='g')
    plt.ylabel('Phase [rad]', color='g')
    plt.xlabel('Frequency')
    plt.grid()

    plt.show()
示例#2
0
    def test_util_filterResponse(self):
        sr = self.stream[0].stats.sampling_rate

        # test filterResponse vs filter2
        st = self.stream.copy()
        data = st[0].data.copy()
        N = len(data)
        nfft = nextpow2(len(data))
        values = util.main.filterResp(1, 5, corners=2, sr=20, N=nfft, whole=True)[1]
        st.filter2(1, 5, corners=2)
        data2 = ifft(fft(data, nfft) * values, nfft)
        np.testing.assert_array_almost_equal(st[0].data, data2[:N])

        # test stream interface
        st = self.stream.copy()
        st.fft()
        st.filter2(1, 5, corners=2)
        st.ifft()
        np.testing.assert_array_almost_equal(st[0].data, data2[:N])

        # filtering with filterResponse and zerophase=Trueproduces a peak at
        # the end of data. With nfft=N there is no peak anymore, but still the values are not the same
        st = self.stream.copy()
        freqs, values = util.main.filterResp(1, 5, sr=20, N=nfft, corners=2, whole=True, zerophase=True)
        st.filter2(1, 5, corners=2, zerophase=True)
        data2 = ifft(fft(data, nfft) * values, nfft)
        np.testing.assert_array_almost_equal(st[0].data[:-10 * sr], data2[:N - 10 * sr])

        return

        from numpy.fft.helper import ifftshift, fftfreq
        import matplotlib.pyplot as plt

        real_freqs = (ifftshift(freqs) - np.pi) * 0.5 * sr / np.pi
        freqs2 = fftfreq(nfft, 1 / 20.)
        print real_freqs
        print freqs2

        plt.subplot(411)
        plt.plot(real_freqs, np.abs(values))
        ax = plt.subplot(412)
        plt.plot(data, label='data')
        plt.legend()
        plt.subplot(413, sharex=ax)
        plt.plot(st[0].data, alpha=0.5, label='stream.filter2')
        plt.plot(data2[:N], alpha=0.5, label='filterResponse')
        plt.legend()
        plt.show()
示例#3
0
def plot_dft_real_image(signal: np.array.__class__,
                        frequency_discretization=1,
                        is_in_db=False):

    spectrum = fftshift(fft(signal))

    if is_in_db:
        spectrum = power_samples_in_db(
            np.real(spectrum)) + 1j * power_samples_in_db(np.imag(spectrum))

    fft_frequencies = fftshift(
        fftfreq(signal.shape[0], 1 / frequency_discretization))
    plt.subplot(211)
    plt.plot(fft_frequencies, np.real(spectrum))
    plt.subplot(212)
    plt.plot(fft_frequencies, np.imag(spectrum))
    # plt.ion()
    plt.show()
def analyzeData(youts, aMags, rMags, y0, p, m):
    '''
    Analyzes data which was saved to CSV output.
    '''
    
    # Find frequencies between 0.2 and 3 Hz
    freqs = fftfreq(len(tspan), tspan[1] - tspan[0])
    f = array(freqs)
    idx = logical_and(f > 0.2, f < 3)    # Logical index
    
    # Find best responses where the frequencies are high between range above
    sums = [sum(aMags[i, idx]) + sum(rMags[i, idx]) for i in range(0, size(aMags, 0))]
    sums = array(sums)
    extract = array(sorted(enumerate(sums), key = lambda s: s[1], reverse = True))
    
    best100 = [int(i) for i in extract[0:100, 0]]
    stats = calcStats(p[best100])
    for i in range(0, len(m.pnames)):
        print m.pnames[i] + ':', stats['lower95'][i], '|', stats['upper95'][i], '|', stats['median'][i]
    
    '''
示例#5
0
from numpy.fft.helper import fftfreq, fftshift
from scipy.fftpack import ifft, ifftshift
from scipy.signal.signaltools import convolve

from WiSim.plot_utils import plot_dft_real_image, plot_dft_abs_phase
from WiSim.signal_source import SignalSource
from WiSim.utils import complex_randn, db_to_power

# Construct signal
frequency_discretization = 600 * 10 ** 6

period_discretization = 1 / frequency_discretization

window_length = int(1024/2)

fft_frequencies = fftshift(fftfreq(window_length, period_discretization))

signal_borders = (70 * 10 ** 6, 230 * 10 ** 6)
signal_positions = (fft_frequencies > signal_borders[0]) & (fft_frequencies < signal_borders[1])
n_signal_positions = sum(signal_positions)

random_component = complex_randn((n_signal_positions,))
coefficients = np.arange(1, random_component.shape[0] + 1)
random_component *= coefficients
signal = np.zeros((window_length,), dtype=np.complex128)
signal[signal_positions] = random_component


signal = ifft(ifftshift(signal))

# Adding noise to the signal
示例#6
0
文件: trace.py 项目: wangwu1991/sito
 def fftfreq(self):
     if not self.stats.is_fft:
         raise ValueError('Trace is no fft.')
     return fftfreq(self.stats.npts, 1. / self.stats.sampling_rate)
示例#7
0
文件: trace.py 项目: iceseismic/sito
 def fftfreq(self):
     if not self.stats.is_fft:
         raise ValueError('Trace is no fft.')
     return fftfreq(self.stats.npts, 1. / self.stats.sampling_rate)