示例#1
0
def distmat(X, Y):
    n = len(X)
    m = len(Y)
    xx = ml.sum(X*X, axis=1)
    yy = ml.sum(Y*Y, axis=1)
    xy = ml.dot(X, Y.T)
    return npy.tile(xx, (m, 1)).T+npy.tile(yy, (n, 1)) - 2*xy
示例#2
0
文件: mog.py 项目: zlcnup/csmath
def zl_distvec(X, Y):
    n = len(X)
    m = len(Y)
    xx = ml.sum(X*X, axis=1)
    yy = ml.sum(Y*Y, axis=1)
    xy = ml.dot(X, Y.T)
    return tile(xx, (m, 1)).T+tile(yy, (n, 1)) - 2*xy
示例#3
0
def nk_bhatta(X1, X2, eta):
    # Returns the non-kernelized Bhattacharrya
    #I.e. fits normal distributions in input space and calculates Bhattacharrya overlap between them
    (n1, d1) = X1.shape
    (n2, d) = X2.shape
    assert d1 == d
    mu1 = mat.sum(X1, 0) / n1
    mu2 = mat.sum(X2, 0) / n2
    X1c = X1 - mat.tile(mu1, (n1, 1))
    X2c = X2 - mat.tile(mu2, (n2, 1))
    Eta = mat.eye(d) * eta
    S1 = X1c.T * X1c / n1 + Eta
    S2 = X2c.T * X2c / n2 + Eta

    mu3 = .5 * (S1.I * mu1.T + S2.I * mu2.T).T
    S3 = 2 * (S1.I + S2.I).I

    d1 = la.det(S1)**-.25
    d2 = la.det(S2)**-.25
    d3 = la.det(S3)**.5
    dterm = d1 * d2 * d3

    e1 = -.25 * mu1 * S1.I * mu1.T
    e2 = -.25 * mu2 * S2.I * mu2.T
    e3 = .5 * mu3 * S3 * mu3.T

    eterm = math.exp(e1 + e2 + e3)

    return float(dterm * eterm)
示例#4
0
def nk_bhatta(X1, X2, eta):
    # Returns the non-kernelized Bhattacharrya
    #I.e. fits normal distributions in input space and calculates Bhattacharrya overlap between them
    (n1, d1) = X1.shape
    (n2, d ) = X2.shape
    assert d1 == d
    mu1 = mat.sum(X1,0) / n1
    mu2 = mat.sum(X2,0) / n2
    X1c = X1 - mat.tile(mu1, (n1,1))
    X2c = X2 - mat.tile(mu2, (n2,1))
    Eta = mat.eye(d) * eta
    S1 = X1c.T * X1c / n1 + Eta
    S2 = X2c.T * X2c / n2 + Eta

    mu3 = .5 * (S1.I * mu1.T + S2.I * mu2.T).T
    S3  = 2  * (S1.I + S2.I).I

    d1 = la.det(S1) ** -.25
    d2 = la.det(S2) ** -.25
    d3 = la.det(S3) ** .5
    dterm = d1 * d2 * d3

    e1 = -.25 * mu1 * S1.I * mu1.T
    e2 = -.25 * mu2 * S2.I * mu2.T
    e3 = .5   * mu3 * S3   * mu3.T

    eterm = math.exp(e1 + e2 + e3)

    return float(dterm * eterm)
示例#5
0
def zl_distvec(X, Y):
    n = len(X)
    m = len(Y)
    xx = ml.sum(X * X, axis=1)
    yy = ml.sum(Y * Y, axis=1)
    xy = ml.dot(X, Y.T)
    return tile(xx, (m, 1)).T + tile(yy, (n, 1)) - 2 * xy
示例#6
0
def kernel_matrix(X, kernel, n1, n2):
    (n, d) = X.shape
    assert n == n1 + n2

    K = mat.zeros((n,n))
    for i in xrange(n):
        for j in xrange(i+1):
            K[i,j] = kernel(X[i,:], X[j,:])
            K[j,i] = K[i,j]

    U1 = mat.sum(K[0:n1,:],0) / n1
    U2 = mat.sum(K[n1:n,:],0) / n2
    U1m = mat.tile(U1, (n1,1))
    U2m = mat.tile(U2, (n2,1))
    U = mat.bmat('U1m; U2m')
    m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1*n1)
    m1m2 = mat.sum(K[0:n1, n1:n]) / (n1*n2)
    m2m2 = mat.sum(K[n1:n, n1:n]) / (n2*n2) 
    mumu = mat.zeros((n,n))
    mumu[0:n1, 0:n1] = m1m1
    mumu[0:n1, n1:n] = m1m2
    mumu[n1:n, 0:n1] = m1m2
    mumu[n1:n, n1:n] = m2m2
    Kcu = K - U
    Kuc = Kcu.T
    N = mat.ones((n,n))/n
    Kc = K - U - U.T + mumu
    return (K, Kuc, Kc)
def distance(X, Y):
    n = len(X)
    m = len(Y)
    xx = matlib.sum(X*X, axis=1)
    yy = matlib.sum(Y*Y, axis=1)
    xy = matlib.dot(X, Y.T)
    return tile(xx, (m, 1)).T+tile(yy, (n, 1)) - 2*xy
示例#8
0
def kernel_matrix(X, kernel, n1, n2):
    (n, d) = X.shape
    assert n == n1 + n2

    K = mat.zeros((n, n))
    for i in xrange(n):
        for j in xrange(i + 1):
            K[i, j] = kernel(X[i, :], X[j, :])
            K[j, i] = K[i, j]

    U1 = mat.sum(K[0:n1, :], 0) / n1
    U2 = mat.sum(K[n1:n, :], 0) / n2
    U1m = mat.tile(U1, (n1, 1))
    U2m = mat.tile(U2, (n2, 1))
    U = mat.bmat('U1m; U2m')
    m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1 * n1)
    m1m2 = mat.sum(K[0:n1, n1:n]) / (n1 * n2)
    m2m2 = mat.sum(K[n1:n, n1:n]) / (n2 * n2)
    mumu = mat.zeros((n, n))
    mumu[0:n1, 0:n1] = m1m1
    mumu[0:n1, n1:n] = m1m2
    mumu[n1:n, 0:n1] = m1m2
    mumu[n1:n, n1:n] = m2m2
    Kcu = K - U
    Kuc = Kcu.T
    N = mat.ones((n, n)) / n
    Kc = K - U - U.T + mumu
    return (K, Kuc, Kc)
示例#9
0
文件: mog.py 项目: cszachary/CS-math
def distMat(X, Y):
    n = len(X)
    m = len(Y)
    xx = ml.sum(X * X, axis=1)
    yy = ml.sum(Y * Y, axis=1)
    xy = ml.dot(X, Y.T)

    return np.tile(xx, (m, 1)).T + np.tile(yy, (n, 1)) - 2 * xy
示例#10
0
 def  distmat(X,Y):
     n = len(X)
     m = len(Y)
     xx = ml.sum(X*X,axis=1) # #axis=1 是按行求和
     print "xx:{}".format(xx)
     yy = ml.sum(Y*Y,axis=1)
     print "yy:{}".format(yy)
     xy = ml.dot(X,Y.T) #dot矩阵相乘
     return tile(xx,(m,1)).T + tile(yy,(n,1)) - 2*xy #tile矩阵复制
示例#11
0
def prepare_bhatta(X1, X2, kernel, eta, verbose=False):
    (n1, d1) = X1.shape
    (n2, d) = X2.shape
    assert d1 == d
    n = n1 + n2
    X = mat.bmat('X1;X2')
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    G = GS_basis(Kc, verbose)
    (null, g_dim) = G.shape

    mu1 = mat.sum(Kuc[0:n1, :] * G, 0) / n1
    mu2 = mat.sum(Kuc[n1:n, :] * G, 0) / n2

    return (Kc, G, mu1, mu2)
示例#12
0
def prepare_bhatta(X1, X2, kernel, eta, verbose=False):
    (n1, d1) = X1.shape
    (n2, d ) = X2.shape
    assert d1 == d
    n = n1 + n2
    X = mat.bmat('X1;X2')
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    G = GS_basis(Kc, verbose)
    (null, g_dim) = G.shape

    mu1 = mat.sum(Kuc[0:n1,:] * G,0) / n1
    mu2 = mat.sum(Kuc[n1:n,:] * G,0) / n2

    return (Kc, G, mu1, mu2)
示例#13
0
    def kernel_submatrix(self):
        # Cache kernel evaluations between vectors in this dataset so we don't repeat this work every
        # time we call Bhattacharrya
        X = self.X
        (n,d) = X.shape
        K = mat.zeros((n,n))
        for i in xrange(n):
            for j in xrange(i+1):
                K[i,j] = self.kernel(X[i,:], X[j,:])
                K[j,i] = K[i,j]

        Ki = mat.sum(K,1) / n
        k  = mat.sum(K) / (n*n)
        Kc = K - Ki * mat.ones((1,n)) - mat.ones((n,1)) * Ki.T + k * mat.ones((n,n))
        return (K, Kc)
示例#14
0
def compute_merit(B, U, model, penalty_coeff):
    xDim = model.xDim
    T = model.T
    merit = 0
    
    for t in xrange(0,T-1):
        x, s = belief.decompose_belief(B[:,t], model)
        merit += model.alpha_belief*ml.trace(s*s)
        merit += model.alpha_control*ml.sum(U[:,t].T*U[:,t])
        merit += penalty_coeff*ml.sum(np.abs(B[:,t+1]-belief.belief_dynamics(B[:,t],U[:,t],None,model)))
    
    x, s = belief.decompose_belief(B[:,T-1], model)
    merit += model.alpha_final_belief*ml.trace(s*s)

    return merit
示例#15
0
    def kernel_submatrix(self):
        # Cache kernel evaluations between vectors in this dataset so we don't repeat this work every
        # time we call Bhattacharrya
        X = self.X
        (n, d) = X.shape
        K = mat.zeros((n, n))
        for i in xrange(n):
            for j in xrange(i + 1):
                K[i, j] = self.kernel(X[i, :], X[j, :])
                K[j, i] = K[i, j]

        Ki = mat.sum(K, 1) / n
        k = mat.sum(K) / (n * n)
        Kc = K - Ki * mat.ones((1, n)) - mat.ones(
            (n, 1)) * Ki.T + k * mat.ones((n, n))
        return (K, Kc)
示例#16
0
def compute_probability(S, K, model):

    T = model.T
    h = 10

    Smin = np.zeros(T)
    Smax = np.zeros(T)
    P = ml.zeros([T, K])
    for i in range(T):
        Smin[i] = np.min(S[i, :])
        Smax[i] = np.max(S[i, :])
        #IPython.embed()
        if (Smin[i] == Smax[i]):
            Smax[i] = 1

    for i in range(T):
        P[i, :] = np.exp(-h * (S[i, :] - Smin[i]) / (Smax[i] - Smin[i]))

        normalize = ml.sum(P[i, :])
        # if(normalize == K):
        #     P[i,:] = 0.005;

        P[i, :] = P[i, :] / normalize

    return P
示例#17
0
def cost_func(B, model, profile, profiler):

    cost = ml.zeros([model.T, 1])
    U = ml.zeros([model.uDim, model.T])
    T = model.T

    for t in range(T - 1):
        U[:, t] = B[0:model.xDim, t + 1] - B[0:model.xDim, t]

        B[:, t + 1] = belief.belief_dynamics(B[:, t], U[:, t], None, model)

        if max(U[:, t]) > 1:
            cost[t] = 1000

        elif abs(B[0, t]) > model.xMax[0]:
            cost[t] = 1000

        elif abs(B[1, t]) > model.xMax[1]:
            cost[t] = 1000

        else:
            null, s = belief.decompose_belief(B[:, t], model)
            cost[t] = model.alpha_belief * ml.trace(
                s * s) + model.alpha_control * ml.sum(U[:, t].T * U[:, t])

    x, s = belief.decompose_belief(B[:, T - 1], model)
    cost[T - 1] = model.alpha_final_belief * ml.trace(s * s)

    return cost, B, U
示例#18
0
def compute_probability(S,K,model):
    
    T = model.T; 
    h = 10; 

    Smin = np.zeros(T)
    Smax = np.zeros(T)
    P = ml.zeros([T,K])
    for i in range(T):
        Smin[i] = np.min(S[i,:]); 
        Smax[i] = np.max(S[i,:]); 
        #IPython.embed()
        if(Smin[i] == Smax[i]):
            Smax[i] = 1; 

    
    for i in range(T):
        P[i,:] = np.exp(-h*(S[i,:] - Smin[i])/(Smax[i]-Smin[i]));
      
        normalize = ml.sum(P[i,:]); 
        # if(normalize == K):
        #     P[i,:] = 0.005; 

        P[i,:] = P[i,:]/normalize;
    
     
    return P
示例#19
0
 def inf(self, x, meanonly=False):
     x = np.asmatrix(x)
     if x.shape[1] != self.d:
         if x.shape[0] == self.d:
             x = x.T
         else:
             raise Exception('Invalid test-set dimension -- '
                             'expected d = ' + str(self.d) + '.')
     n = x.shape[0]
     # Handle empty test set
     if n == 0:
         return (np.zeros((0, 1)), np.zeros((0, 1)))
     ms = self.kernel.mean*np.ones((n, 1))
     Kbb = self.kernel(x, diag=True)
     # Handle empty training set
     if len(self) == 0:
         return (ms, np.asmatrix(Kbb))
     Kba = self.kernel(x, self.x)
     m = self.kernel.mean*np.ones((len(self), 1))
     fm = ms + Kba*scipy.linalg.cho_solve((self.L, True), self.y - m,
                                          overwrite_b=True)
     if meanonly:
         return fm
     else:
         W = scipy.linalg.cho_solve((self.L, True), Kba.T)
         fv = np.asmatrix(Kbb - np.sum(np.multiply(Kba.T, W), axis=0).T)
         # W = np.asmatrix(scipy.linalg.solve(self.L, Kba.T, lower=True))
         # fv = np.asmatrix(Kbb - np.sum(np.power(W, 2), axis=0).T)
         return (fm, fv)
示例#20
0
def cost_func(B,model,profile,profiler):

    cost = ml.zeros([model.T,1])
    U = ml.zeros([model.uDim,model.T])
    T = model.T

    for t in range(T-1):
        U[:,t] = B[0:model.xDim,t+1]-B[0:model.xDim,t];

        B[:,t+1] = belief.belief_dynamics(B[:,t],U[:,t],None,model);
 
        if max(U[:,t])> 1:
            cost[t] = 1000

        elif abs(B[0,t]) > model.xMax[0]:
            cost[t] = 1000

        elif abs(B[1,t]) > model.xMax[1]:
            cost[t] = 1000
            
        else:  
            null, s = belief.decompose_belief(B[:,t], model)
            cost[t] = model.alpha_belief*ml.trace(s*s)+model.alpha_control*ml.sum(U[:,t].T*U[:,t])

    x, s = belief.decompose_belief(B[:,T-1], model)
    cost[T-1] = model.alpha_final_belief*ml.trace(s*s)



    return cost, B, U
示例#21
0
文件: kmedoids.py 项目: ezass/mltk
def _kmedoids(distmat, threshold, imedoids, verbose):
    """\
    The *raw* version of k-medoids.
    """
    # initialize J
    Jprev = inf
    # initialize iteration count
    iter = 0

    # iterations
    while True:
        # distance from medoids to all other points
        dist = distmat[imedoids]
        # assign x to nearst medoid
        labels = dist.argmin(axis=0)
        J = 0
        # re-choose each medoids
        for j in range(len(imedoids)):
            idx_j = (labels == j).nonzero()[0]
            distj = distmat[idx_j][:, idx_j]
            distsum = ml.sum(distj, axis=1)
            idxmin = distsum.argmin()
            imedoids[j] = idx_j[idxmin]
            J += distsum[idxmin]

        iter += 1
        if verbose:
            print '[kmedoids] iter %d (J=%.4f)' % (iter, J)

        if Jprev-J < threshold:
            break
        Jprev = J

    return imedoids, labels, J
示例#22
0
    def bhatta(self,i,j):
        """Here is the actual Bhattacharrya algorithm"""
        eta = self.eta
        D1 = self.datasets[i]
        D2 = self.datasets[j]
        Beta1 = D1.Beta
        Beta2 = D2.Beta
        (n1, r) = Beta1.shape
        (n2, r) = Beta2.shape
        n = n1 + n2
        Beta = mat.zeros((n,2*r))
        Beta[0:n1,0:r] = Beta1
        Beta[n1:n,r:2*r] = Beta2

        (K, Kuc, Kc) = self.kernel_supermatrix(i,j)
        # K = uncentered kernel matrix 
        # Kuc = Matrix between centered and uncentered vectors
        # Kc = Centered kernel matrix
        Omega = eig_ortho(Kc, Beta)
        mu1 = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
        mu2 = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

        S1  = Omega.T * Kc[:,0:n1] * Kc[0:n1,:] * Omega / n1
        S2  = Omega.T * Kc[:,n1:n] * Kc[n1:n,:] * Omega / n2
        Eta = eta * mat.eye(2*r)    
        S1 += Eta
        S2 += Eta

        mu3 = .5 * (S1.I * mu1.T + S2.I * mu2.T).T
        S3 = 2 * (S1.I + S2.I).I

        d1 = la.det(S1) ** -.25
        d2 = la.det(S2) ** -.25
        d3 = la.det(S3) ** .5

        e1 = exp(-mu1 * S1.I * mu1.T / 4)
        e2 = exp(-mu2 * S2.I * mu2.T / 4)
        e3 = exp(mu3 * S3 * mu3.T / 2)

        dterm = d1 * d2 * d3
        eterm = e1 * e2 * e3
        rval = dterm * eterm

        if math.isnan(rval):
            rval = -1
            print "Warning: Kernel failed on datasets ({},{})".format(i,j)
        return rval
示例#23
0
    def bhatta(self, i, j):
        """Here is the actual Bhattacharrya algorithm"""
        eta = self.eta
        D1 = self.datasets[i]
        D2 = self.datasets[j]
        Beta1 = D1.Beta
        Beta2 = D2.Beta
        (n1, r) = Beta1.shape
        (n2, r) = Beta2.shape
        n = n1 + n2
        Beta = mat.zeros((n, 2 * r))
        Beta[0:n1, 0:r] = Beta1
        Beta[n1:n, r:2 * r] = Beta2

        (K, Kuc, Kc) = self.kernel_supermatrix(i, j)
        # K = uncentered kernel matrix
        # Kuc = Matrix between centered and uncentered vectors
        # Kc = Centered kernel matrix
        Omega = eig_ortho(Kc, Beta)
        mu1 = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
        mu2 = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

        S1 = Omega.T * Kc[:, 0:n1] * Kc[0:n1, :] * Omega / n1
        S2 = Omega.T * Kc[:, n1:n] * Kc[n1:n, :] * Omega / n2
        Eta = eta * mat.eye(2 * r)
        S1 += Eta
        S2 += Eta

        mu3 = .5 * (S1.I * mu1.T + S2.I * mu2.T).T
        S3 = 2 * (S1.I + S2.I).I

        d1 = la.det(S1)**-.25
        d2 = la.det(S2)**-.25
        d3 = la.det(S3)**.5

        e1 = exp(-mu1 * S1.I * mu1.T / 4)
        e2 = exp(-mu2 * S2.I * mu2.T / 4)
        e3 = exp(mu3 * S3 * mu3.T / 2)

        dterm = d1 * d2 * d3
        eterm = e1 * e2 * e3
        rval = dterm * eterm

        if math.isnan(rval):
            rval = -1
            print "Warning: Kernel failed on datasets ({},{})".format(i, j)
        return rval
def kmedoids(X, k, observer=None, threshold=1e-15, maxiter=300):
    '''
    Cluster and show data X
    X: N * 2 array, data to be clustered
    k: k means
    observer: the plot function
    '''
    N = len(X)
    labels = zeros(N, dtype=int)
    centers = array(random.sample(X, k))   # Choose k unique elements from X
    iter = 0
 
    def calc_J():
        sum = 0
        for i in xrange(N):
            sum += norm(X[i]-centers[labels[i]])
        return sum
 
    def distmat(X, Y):
        n = len(X)
        m = len(Y)
        xx = ml.sum(X*X, axis=1)
        yy = ml.sum(Y*Y, axis=1)
        xy = ml.dot(X, Y.T)
 
        return tile(xx, (m, 1)).T+tile(yy, (n, 1)) - 2*xy
 
    Jprev = calc_J()
    while True:
        # notify the observer
        if observer is not None:
            observer(iter, labels, centers)
 
        # calculate distance from x to each center
        # distance_matrix is only available in scipy newer than 0.7
        # dist = distance_matrix(X, centers)
        dist = distmat(X, centers)
        # assign x to nearst center
        labels = dist.argmin(axis=1)
        # re-calculate each center
        for j in range(k):
            idx_j = (labels == j).nonzero()
            distj = distmat(X[idx_j], X[idx_j])
            distsum = ml.sum(distj, axis=1)
            icenter = distsum.argmin()
            centers[j] = X[idx_j[0][icenter]]

        J = calc_J()
        iter += 1
 
        if Jprev-J < threshold:
            break
        Jprev = J
        if iter >= maxiter:
            break
 
    # final notification
    if observer is not None:
        observer(iter, labels, centers)
示例#25
0
文件: solid.py 项目: aJuvenn/Quike
    def __init__(self, points, masses):
        """
            Inputs:
                points: list of 3 dimensional points
                masses: list of float (same length as points)
        """

        self.nb_points = len(points)

        if self.nb_points == 0:
            raise (Exception, "Provide at least one point")

        if len(masses) != self.nb_points:
            raise (Exception,
                   "Same number of points and masses must be provided")

        self.masses = masses
        self.initial_points = [Vect(p) for p in points]

        # Center of mass p and its velocity
        self.center_position = npmat.sum(self.initial_points,
                                         axis=0) / self.nb_points
        self.center_velocity = npmat.zeros((3, 1))

        # Position of the points relative to the center of mass, stacked into a big matrix
        self.centered_initial_points_hstack = npmat.hstack(
            self.initial_points) - self.center_position

        # Total mass and its inverse
        self.total_mass = npmat.sum(self.masses)
        self.total_mass_inverse = 1. / self.total_mass

        # Inertia matrix and its inverse
        self.initial_inertia_matrix = Solid._inertia_matrix(
            self.masses, self.centered_initial_points_hstack)
        self.initial_inertia_matrix_inverse = npmat.linalg.pinv(
            self.initial_inertia_matrix)

        # Rotation quaternion (used to construct matrix representing orientation) and angular momentum (sigma)
        self.rotation_quaternion = Vect([1., 0., 0., 0.])
        self.rotation_matrix = rotation_matrix_from_quaternion(
            self.rotation_quaternion)
        self.angular_momentum = npmat.zeros((3, 1))

        self._compute_AABB()
示例#26
0
def dist_matrix(pts):
    """Calculate the euclidean distance matrix (EDM) for a set of points.

    Parameters
    ----------
    pts : np.ndarray (shape = (2,))

    Returns
    -------
    dist_mat : np.ndarray
        The distance matrix as 2d ndarray.

    Implementation Details
    ----------------------
    Uses two auxiliary matrixes to easily calculate the distance from each
    point to every other point in the list using this approach:
    (1) aux matrixes:
    repmat(l, n1, n2): l is repeated n1 times, along axis 1, and n2 times along
    axis 2, so repmat(pts, len(pts), 1) =
        array( [ [1, 2], [4, 6], [1, 2], [4, 6] ] )
    repeat(l, n, a): each element of l is repeated n times along axis a (w/o
    'a' a plain list is generated), so repeat(pts, 2, 1) =
        array( [ [1, 2], [1, 2], [4, 6], [4, 6] ] )
    (2) Pythagoras:
    Then, the element-wise difference of the generated matrixes is calculated
    each value is squared:
        array( [ [ 0,  0], [ 9, 16], [ 9, 16], [ 0,  0] ] )
    These squares are then summed up (linewise) using sum(..., axis=1):
        array([ 0, 25, 25,  0])
    Finally the square root is taken for each element:
        array([ 0.,  5.,  5.,  0.])
    To transform the list into a distance matrix reshape() is used.

    Example
    -------
    >>> dist_matrix([ [1, 2], [4, 6] ])
    array([[ 0.,  5.],
           [ 5.,  0.]])
    >>> dist_matrix([ [1.8, 4.1, 4.0], [2.8, 4.7, 4.5], [5.2, 4.2, 4.7],
    ...               [4.1, 4.5, 4.6], [5.7, 3.4, 4.5]])
    array([[ 0.        ,  1.26885775,  3.47275107,  2.41039416,  3.99374511],
           [ 1.26885775,  0.        ,  2.45967478,  1.3190906 ,  3.17804972],
           [ 3.47275107,  2.45967478,  0.        ,  1.14455231,  0.96436508],
           [ 2.41039416,  1.3190906 ,  1.14455231,  0.        ,  1.94422221],
           [ 3.99374511,  3.17804972,  0.96436508,  1.94422221,  0.        ]])
    """
    dist_mat = scipy.sqrt(
        matlib.sum(
            (
                matlib.repmat(pts, len(pts), 1) -
                matlib.repeat(pts, len(pts), axis=0)
            ) ** 2,
            axis=1
        )
    )
    return dist_mat.reshape((len(pts), len(pts)))
示例#27
0
def BhattaFromDataset(D1, D2, eta):
    assert D1.r == D2.r
    kernel = D1.kernel
    Beta1 = D1.Beta
    Beta2 = D2.Beta
    (n1, r) = Beta1.shape
    (n2, r) = Beta2.shape
    n = n1 + n2
    Beta = mat.zeros((n,2*r))
    Beta[0:n1,0:r] = Beta1
    Beta[n1:n,r:2*r] = Beta2
    (K, Kuc, Kc) = kernel_supermatrix(D1,D2)
    Omega = eig_ortho(Kc, Beta)
    mu1 = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
    mu2 = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

    S1 = Omega.T * Kc[:,0:n1] * Kc[0:n1,:] * Omega / n1
    S2 = Omega.T * Kc[:,n1:n] * Kc[n1:n,:] * Omega / n2
    Eta= eta * mat.eye(2*r)    
    S1 += Eta
    S2 += Eta

    mu3 = .5 * (S1.I * mu1.T + S2.I * mu2.T).T
    S3 = 2 * (S1.I + S2.I).I

    d1 = la.det(S1) ** -.25
    d2 = la.det(S2) ** -.25
    d3 = la.det(S3) ** .5

    e1 = math.exp(-mu1 * S1.I * mu1.T / 4)
    e2 = math.exp(-mu2 * S2.I * mu2.T / 4)
    e3 = math.exp(mu3 * S3 * mu3.T / 2)

    dterm = d1*d2*d3
    eterm = e1*e2*e3
    rval = dterm*eterm

    if math.isnan(rval):
        rval = -1
        print "Warning: Kernel failed on datasets ({},{})".format(i,j)
    return rval
示例#28
0
def BhattaFromDataset(D1, D2, eta):
    assert D1.r == D2.r
    kernel = D1.kernel
    Beta1 = D1.Beta
    Beta2 = D2.Beta
    (n1, r) = Beta1.shape
    (n2, r) = Beta2.shape
    n = n1 + n2
    Beta = mat.zeros((n, 2 * r))
    Beta[0:n1, 0:r] = Beta1
    Beta[n1:n, r:2 * r] = Beta2
    (K, Kuc, Kc) = kernel_supermatrix(D1, D2)
    Omega = eig_ortho(Kc, Beta)
    mu1 = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
    mu2 = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

    S1 = Omega.T * Kc[:, 0:n1] * Kc[0:n1, :] * Omega / n1
    S2 = Omega.T * Kc[:, n1:n] * Kc[n1:n, :] * Omega / n2
    Eta = eta * mat.eye(2 * r)
    S1 += Eta
    S2 += Eta

    mu3 = .5 * (S1.I * mu1.T + S2.I * mu2.T).T
    S3 = 2 * (S1.I + S2.I).I

    d1 = la.det(S1)**-.25
    d2 = la.det(S2)**-.25
    d3 = la.det(S3)**.5

    e1 = math.exp(-mu1 * S1.I * mu1.T / 4)
    e2 = math.exp(-mu2 * S2.I * mu2.T / 4)
    e3 = math.exp(mu3 * S3 * mu3.T / 2)

    dterm = d1 * d2 * d3
    eterm = e1 * e2 * e3
    rval = dterm * eterm

    if math.isnan(rval):
        rval = -1
        print "Warning: Kernel failed on datasets ({},{})".format(i, j)
    return rval
示例#29
0
def EMForMoG(datam, n, pl, muvl, covml, max_iters=1):
    assert len(pl)==len(muvl) and len(muvl)==len(covml) 
    d=datam.shape[0]
    N=datam.shape[1]
    #start EM posteriorm n*N
    posteriorm=matlib.zeros((n, N), dtype=np.float32)
    for it in xrange(max_iters):
        print 'Iter: '+str(it)
        #create Gaussian kernels
        NormalFl=[makeNormalF(muv, covm) for muv, covm in zip(muvl, covml)]
        #probability
        px=matlib.zeros((1, N), dtype=np.float32)
        posteriorm.fill(0)
        #caculate posteriorm
        for j in xrange(N):
            cur_data=datam[:, j]
            for i in xrange(n):
                #print i, j
                posteriorm[i, j]=pl[i]*NormalFl[i](cur_data)
                px[0, j]+=posteriorm[i, j]
#        print 'px:', px
        posteriorm/=px
        #update parameters
        #soft num n*1
        softnum=matlib.sum(posteriorm, 1)
        print softnum
        softnum_inv=1.0/softnum
        pl=np.array((softnum/N)).reshape(-1).tolist()
        mum=datam*posteriorm.T*matlib.diag(np.array(softnum_inv).reshape(-1))
        muvl=[mum[:, k] for k in range(n)]
        mum=[]#release         
        for k in range(n):
            datam_temp=datam-muvl[k]
            covml[k]=softnum_inv[k, 0]*datam_temp*matlib.diag(np.array(posteriorm[k, :]).reshape(-1))\
            *datam_temp.T
    return pl, muvl, covml
            
            
        
        
        
        
        
        
        
        
        
        
        
        
        
        
def verify_kernel_matrix():
    n1 = 10
    n2 = 10
    n = n1+n2
    d = 5
    degree = 3
    X = randn(n,d)
    Phi = poly.phi(X, degree)
    (K, Kuc, Kc) = kernel_matrix(X, polyk(degree), n1, n2)
    P1 = Phi[0:n1,:]
    P2 = Phi[n1:n,:]

    mu1 = mat.sum(P1,0) / n1
    mu2 = mat.sum(P2,0) / n2
    P1c = P1 - mat.tile(mu1, (n1,1))
    P2c = P2 - mat.tile(mu2, (n2,1))
    Pc = bmat('P1c; P2c')

    KP = mat.zeros((n,n))
    for i in xrange(n):
        for j in xrange(i+1):
            KP[i,j] = dotp(Phi[i,:], Phi[j,:])
            KP[j,i] = KP[i,j]

    KucP = mat.zeros((n,n))
    for i in xrange(n):
        for j in xrange(n):
            KucP[i,j] = dotp(Phi[i,:], Pc[j,:])

    KcP = mat.zeros((n,n))
    for i in xrange(n):
        for j in xrange(n):
            KcP[i,j] = dotp(Pc[i,:], Pc[j,:])
            #KcP[j,i] = KcP[i,j]

    #debug()
    print "Div1: " + str(sum(abs(K-KP)))
    print "Div2: " + str(sum(abs(Kuc-KucP)))
    print "Div3: " + str(sum(abs(Kc-KcP)))
示例#31
0
    def kernel_supermatrix(self, i, j):
        kernel = self.kernel
        D1 = self.datasets[i]
        D2 = self.datasets[j]
        X1 = D1.X
        X2 = D2.X
        (n1, d) = X1.shape
        (n2, d) = X2.shape
        n = n1 + n2
        X = mat.bmat('X1; X2')
        K1 = D1.K
        K2 = D2.K
        K = mat.zeros((n, n))
        K[0:n1, 0:n1] = K1
        K[n1:n, n1:n] = K2
        for i in xrange(n1):
            for j in xrange(n1, n):
                K[i, j] = kernel(X[i, :], X[j, :])
                K[j, i] = K[i, j]

        # Inelegant - improve later
        U1 = mat.sum(K[0:n1, :], 0) / n1
        U2 = mat.sum(K[n1:n, :], 0) / n2
        U1m = mat.tile(U1, (n1, 1))
        U2m = mat.tile(U2, (n2, 1))
        U = mat.bmat('U1m; U2m')
        m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1 * n1)
        m1m2 = mat.sum(K[0:n1, n1:n]) / (n1 * n2)
        m2m2 = mat.sum(K[n1:n, n1:n]) / (n2 * n2)
        mumu = mat.zeros((n, n))
        mumu[0:n1, 0:n1] = m1m1
        mumu[0:n1, n1:n] = m1m2
        mumu[n1:n, 0:n1] = m1m2
        mumu[n1:n, n1:n] = m2m2
        Kcu = K - U
        Kuc = Kcu.T
        N = mat.ones((n, n)) / n
        Kc = K - U - U.T + mumu
        return (K, Kuc, Kc)
示例#32
0
    def kernel_supermatrix(self, i, j):
        kernel = self.kernel
        D1 = self.datasets[i]
        D2 = self.datasets[j]
        X1 = D1.X
        X2 = D2.X
        (n1, d) = X1.shape
        (n2, d) = X2.shape
        n = n1 + n2
        X = mat.bmat('X1; X2')
        K1 = D1.K
        K2 = D2.K
        K = mat.zeros((n,n))
        K[0:n1, 0:n1] = K1
        K[n1:n, n1:n] = K2
        for i in xrange(n1):
            for j in xrange(n1, n):
                K[i,j] = kernel(X[i,:], X[j,:])
                K[j,i] = K[i,j]

        # Inelegant - improve later
        U1 = mat.sum(K[0:n1,:],0) / n1
        U2 = mat.sum(K[n1:n,:],0) / n2
        U1m = mat.tile(U1, (n1,1))
        U2m = mat.tile(U2, (n2,1))
        U = mat.bmat('U1m; U2m')
        m1m1 = mat.sum(K[0:n1, 0:n1]) / (n1*n1)
        m1m2 = mat.sum(K[0:n1, n1:n]) / (n1*n2)
        m2m2 = mat.sum(K[n1:n, n1:n]) / (n2*n2) 
        mumu = mat.zeros((n,n))
        mumu[0:n1, 0:n1] = m1m1
        mumu[0:n1, n1:n] = m1m2
        mumu[n1:n, 0:n1] = m1m2
        mumu[n1:n, n1:n] = m2m2
        Kcu = K - U
        Kuc = Kcu.T
        N = mat.ones((n,n))/n
        Kc = K - U - U.T + mumu
        return (K, Kuc, Kc)
示例#33
0
def kmeans(X, k, observer=None, threshold=1e-15, maxiter=300):
	N = len(X)
	labels = zeros(N, dtype=int)
	centers = array(random.sample(X, k))
	iter = 0

	def calc_J():
		sum = 0
		for i in xrange(N):
			sum += norm(X[i]-centers[labels[i]])
		return sum

	def distmat(X, Y):
		n = len(X)
		m = len(Y)
		xx = ml.sum(X*X, axis=1)
		yy = ml.sum(Y*Y, axis=1)
		xy = ml.dot(X, Y.T)
		
		return tile(xx, (m, 1)).T+tile(yy, (n, 1)) - 2*xy
	
	Jprev = calc_J()
	while True:
		#notify the observer
		if observer is not None:
			observer(iter, labels, centers)

		dist = distmat(X, centers)
		labels = dist.argmin(axis=1)
		for j in range(k):
			idx_j = (labels == j).nonzero()
			distj = distmat(X[idx_j], X[idx_j])
			distsum = ml.sum(distj, axis=1)
			icenter = distsum.argmin()
			centers[j] = X[idx_j[0][icenter]]

		J = calc_J()
		iter += 1
		
		if Jprev-J < threshold:
			break
		Jprev = J
		if iter >= maxiter:
			break
	
	if observer is not None:
		observer(iter, labels, centers)
示例#34
0
def compute_forward_simulated_cost(b, U, model):
 
    T = model.T
    cost = 0
    
    b_t = b

    for t in xrange(0,T-1):
        x_t, s_t = decompose_belief(b_t, model)
        cost += model.alpha_belief*ml.trace(s_t*s_t)
        cost += model.alpha_control*ml.sum(U[:,t].T*U[:,t])
        b_t = belief_dynamics(b_t, U[:,t], None, model)
    
    x_T, s_T = decompose_belief(b_t, model)
    cost += model.alpha_final_belief*ml.trace(s_T*s_T)

    return cost
示例#35
0
def compute_forward_simulated_cost(b, U, model):

    T = model.T
    cost = 0

    b_t = b

    for t in xrange(0, T - 1):
        x_t, s_t = decompose_belief(b_t, model)
        cost += model.alpha_belief * ml.trace(s_t * s_t)
        cost += model.alpha_control * ml.sum(U[:, t].T * U[:, t])
        b_t = belief_dynamics(b_t, U[:, t], None, model)

    x_T, s_T = decompose_belief(b_t, model)
    cost += model.alpha_final_belief * ml.trace(s_T * s_T)

    return cost
示例#36
0
def constraints_satisfied(B, U, model, tolerance):
    xDim = model.xDim
    xMax = model.xMax
    xMin = model.xMin
    uMax = model.uMax
    uMin = model.uMin
    T = model.T
    done = True
    constraint_violations = 0
    for t in xrange(0, T-1):
	constraint_violations += ml.sum(np.abs(B[:,t+1] - belief.belief_dynamics(B[:,t],U[:,t],None,model)))
	done &= constraint_violations < tolerance
	done &= np.max(B[1:xDim,t] <= xMax)
	done &= np.min(B[1:xDim,t] >= xMin)
	done &= np.max(U[:,t] <= uMax)
	done &= np.min(U[:,t] >= uMin)

	if not done:
            break

    #print('Constraint violations: %g' % constraint_violations)
    return done
示例#37
0
文件: core.py 项目: josipd/Gpy
 def inf(self, x, meanonly=False):
     x = np.asmatrix(x)
     assert x.shape[1] == self.d
     n = x.shape[0]
     # Handle empty test set
     if n == 0:
         return (np.zeros((0, 1)), np.zeros((0, 1)))
     ms = self.kernel.mean*np.ones((n, 1))
     Kbb = self.kernel(x, diag=True)
     # Handle empty training set
     if len(self) == 0:
         return (ms, np.asmatrix(np.diag(Kbb)).T)
     Kba = self.kernel(x, self.x)
     m = self.kernel.mean*np.ones((len(self), 1))
     fm = ms + Kba*scipy.linalg.cho_solve((self.L, True), self.y - m,
                                          overwrite_b=True)
     if meanonly:
         return fm
     else:
         W = scipy.linalg.cho_solve((self.L, True), Kba.T)
         fv = np.asmatrix(Kbb - np.sum(np.multiply(Kba.T, W), axis=0).T)
         # W = np.asmatrix(scipy.linalg.solve(self.L, Kba.T, lower=True))
         # fv = np.asmatrix(Kbb - np.sum(np.power(W, 2), axis=0).T)
         return (fm, fv)
示例#38
0
def eig_bhatta(X1, X2, kernel, eta, r):
    # Tested. Verified:
    # Poly-kernel RKHS representations of all objects are roughly equal to eigenbasis representations (slight differences for S3)
    # Correctness for X1 ~= X2
    # Close results to empirical bhatta in test_suite_1
    # Remaining issues: Eigendecomposition of centered kernel matrices
    # occasionally produces negative-value eigenvalues
    (n1, d1) = X1.shape
    (n2, d2) = X2.shape
    assert d1==d2
    n = n1+n2
    X = mat.bmat("X1;X2")
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    Kc1 = Kc[0:n1, 0:n1]
    Kc2 = Kc[n1:n, n1:n]

    (Lam1, Alpha1) = eigsh(Kc1, r)
    (Lam2, Alpha2) = eigsh(Kc2, r)
    Alpha1 = matrix(Alpha1)
    Alpha2 = matrix(Alpha2)
    Lam1 = Lam1 / n1
    Lam2 = Lam2 / n2
    Beta1 = mat.zeros((n,r))
    Beta2 = mat.zeros((n,r))

    for i in xrange(r):
        Beta1[0:n1, i] = Alpha1[:,i] / (n1 * Lam1[i])**.5
        Beta2[n1:n, i] = Alpha2[:,i] / (n2 * Lam2[i])**.5


    #Eta = mat.eye((gamma, gamma)) * eta
    Beta = mat.bmat('Beta1, Beta2')
    assert not(any(math.isnan(Beta)))
    Omega = eig_ortho(Kc, Beta)
    mu1_w = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
    mu2_w = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

    Eta_w = eta * mat.eye(2*r)    

    S1_w = Omega.T * Kc[:,0:n1] * Kc[0:n1,:] * Omega / n1
    S2_w = Omega.T * Kc[:,n1:n] * Kc[n1:n,:] * Omega / n2
    S1_w += Eta_w
    S2_w += Eta_w

    mu3_w = .5 * (S1_w.I * mu1_w.T + S2_w.I * mu2_w.T).T
    S3_w = 2 * (S1_w.I + S2_w.I).I

    d1 = la.det(S1_w) ** -.25
    d2 = la.det(S2_w) ** -.25

    e1 = exp(-mu1_w * S1_w.I * mu1_w.T / 4)
    e2 = exp(-mu2_w * S2_w.I * mu2_w.T / 4)
    d3 = la.det(S3_w) ** .5
    e3 = exp(mu3_w * S3_w * mu3_w.T / 2)

    dterm = d1*d2*d3
    eterm = e1*e2*e3
    rval = float(dterm*eterm)

    if math.isnan(rval):
        rval = -1

    return rval
示例#39
0
def kmeans(X, k, observer=None, threshold=1e-15, maxiter=300, style="kmeans"):

    N = len(X)
    labels = np.zeros(N, dtype=int)

    centers = X[np.random.choice(len(X), k)]
    itr = 0

    def calc_J():
        """
        计算所有点距离和
        """
        sums = 0
        for i in range(N):
            sums += norm(X[i] - centers[labels[i]])
        return sums

    def distmat(X, Y):
        """
        计算距离
        """
        n = len(X)
        m = len(Y)
        xx = ml.sum(X * X, axis=1)
        yy = ml.sum(Y * Y, axis=1)
        xy = ml.dot(X, Y.T)
        return np.tile(xx, (m, 1)).T + np.tile(yy, (n, 1)) - 2 * xy

    Jprev = calc_J()
    while True:
        # 绘图
        observer(itr, labels, centers)

        dist = distmat(X, centers)
        labels = dist.argmin(axis=1)
        # 再次绘图
        observer(itr, labels, centers)
        # 重新计算聚类中心
        if style == "kmeans":
            for j in range(k):
                idx_j = (labels == j).nonzero()
                centers[j] = X[idx_j].mean(axis=0)
        elif style == "kmedoids":
            for j in range(k):
                idx_j = (labels == j).nonzero()
                distj = distmat(X[idx_j], X[idx_j])
                distsum = ml.sum(distj, axis=1)
                icenter = distsum.argmin()
                centers[j] = X[idx_j[0][icenter]]

        J = calc_J()
        itr += 1

        if Jprev - J < threshold:
            """
            当中心不再变化停止迭代
            """
            break
        Jprev = J
        if itr >= maxiter:
            break
示例#40
0
def eig_bhatta(X1, X2, kernel, eta, r):
    # Tested. Verified:
    # Poly-kernel RKHS representations of all objects are roughly equal to eigenbasis representations (slight differences for S3)
    # Correctness for X1 ~= X2
    # Close results to empirical bhatta in test_suite_1
    # Remaining issues: Eigendecomposition of centered kernel matrices
    # occasionally produces negative-value eigenvalues
    (n1, d1) = X1.shape
    (n2, d2) = X2.shape
    assert d1 == d2
    n = n1 + n2
    X = mat.bmat("X1;X2")
    (K, Kuc, Kc) = kernel_matrix(X, kernel, n1, n2)
    Kc1 = Kc[0:n1, 0:n1]
    Kc2 = Kc[n1:n, n1:n]

    (Lam1, Alpha1) = eigsh(Kc1, r)
    (Lam2, Alpha2) = eigsh(Kc2, r)
    Alpha1 = matrix(Alpha1)
    Alpha2 = matrix(Alpha2)
    Lam1 = Lam1 / n1
    Lam2 = Lam2 / n2
    Beta1 = mat.zeros((n, r))
    Beta2 = mat.zeros((n, r))

    for i in xrange(r):
        Beta1[0:n1, i] = Alpha1[:, i] / (n1 * Lam1[i])**.5
        Beta2[n1:n, i] = Alpha2[:, i] / (n2 * Lam2[i])**.5

    #Eta = mat.eye((gamma, gamma)) * eta
    Beta = mat.bmat('Beta1, Beta2')
    assert not (any(math.isnan(Beta)))
    Omega = eig_ortho(Kc, Beta)
    mu1_w = mat.sum(Kuc[0:n1, :] * Omega, 0) / n1
    mu2_w = mat.sum(Kuc[n1:n, :] * Omega, 0) / n2

    Eta_w = eta * mat.eye(2 * r)

    S1_w = Omega.T * Kc[:, 0:n1] * Kc[0:n1, :] * Omega / n1
    S2_w = Omega.T * Kc[:, n1:n] * Kc[n1:n, :] * Omega / n2
    S1_w += Eta_w
    S2_w += Eta_w

    mu3_w = .5 * (S1_w.I * mu1_w.T + S2_w.I * mu2_w.T).T
    S3_w = 2 * (S1_w.I + S2_w.I).I

    d1 = la.det(S1_w)**-.25
    d2 = la.det(S2_w)**-.25

    e1 = exp(-mu1_w * S1_w.I * mu1_w.T / 4)
    e2 = exp(-mu2_w * S2_w.I * mu2_w.T / 4)
    d3 = la.det(S3_w)**.5
    e3 = exp(mu3_w * S3_w * mu3_w.T / 2)

    dterm = d1 * d2 * d3
    eterm = e1 * e2 * e3
    rval = float(dterm * eterm)

    if math.isnan(rval):
        rval = -1

    return rval
示例#41
0
def SPIRIT(A, lamb, energy, k0=1, holdOffTime=0, reorthog=False, evalMetrics="F"):

    A = np.mat(A)

    n = A.shape[1]
    totalTime = A.shape[0]
    Proj = npm.ones((totalTime, n)) * np.nan
    recon = npm.zeros((totalTime, n))

    # initialize w_i to unit vectors
    W = npm.eye(n)
    d = 0.01 * npm.ones((n, 1))
    m = k0  # number of eigencomponents

    relErrors = npm.zeros((totalTime, 1))

    sumYSq = 0.0
    E_t = []
    sumXSq = 0.0
    E_dash_t = []

    res = {}
    k_hist = []
    W_hist = []
    anomalies = []

    # incremental update W
    lastChangeAt = 0

    for t in range(totalTime):

        k_hist.append(m)

        # update W for each y_t
        x = A[t, :].T  # new data as column vector

        for j in range(m):
            W[:, j], d[j], x = updateW(x, W[:, j], d[j], lamb)
            Wj = W[:, j]

        # Grams smit reorthog
        if reorthog == True:
            W[:, :m], R = npm.linalg.qr(W[:, :m])

        # compute low-D projection, reconstruction and relative error
        Y = W[:, :m].T * A[t, :].T  # project to m-dimensional space
        xActual = A[t, :].T  # actual vector of the current time
        xProj = W[:, :m] * Y  # reconstruction of the current time
        Proj[t, :m] = Y.T
        recon[t, :] = xProj.T
        xOrth = xActual - xProj
        relErrors[t] = npm.sum(npm.power(xOrth, 2)) / npm.sum(npm.power(xActual, 2))

        # update energy
        sumYSq = lamb * sumYSq + npm.sum(npm.power(Y, 2))
        E_dash_t.append(sumYSq)
        sumXSq = lamb * sumXSq + npm.sum(npm.power(A[t, :], 2))
        E_t.append(sumXSq)

        # Record RSRE
        if t == 0:
            top = 0.0
            bot = 0.0

        top = top + npm.power(npm.linalg.norm(xActual - xProj), 2)

        bot = bot + npm.power(npm.linalg.norm(xActual), 2)

        new_RSRE = top / bot

        if t == 0:
            RSRE = new_RSRE
        else:
            RSRE = npm.vstack((RSRE, new_RSRE))

        ### Metric EVALUATION ###
        # deviation from truth
        if evalMetrics == "T":

            Qt = W[:, :m]

            if t == 0:
                res["subspace_error"] = npm.zeros((totalTime, 1))
                res["orthog_error"] = npm.zeros((totalTime, 1))
                res["angle_error"] = npm.zeros((totalTime, 1))
                Cov_mat = npm.zeros([n, n])

            # Calculate Covarentce Matrix of data up to time t
            Cov_mat = lamb * Cov_mat + npm.dot(xActual, xActual.T)
            # Get eigenvalues and eigenvectors
            WW, V = npm.linalg.eig(Cov_mat)
            # Use this to sort eigenVectors in according to deccending eigenvalue
            eig_idx = WW.argsort()  # Get sort index
            eig_idx = eig_idx[::-1]  # Reverse order (default is accending)
            # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted).
            V_k = V[:, eig_idx[:m]]
            # Calculate subspace error
            C = npm.dot(V_k, V_k.T) - npm.dot(Qt, Qt.T)
            res["subspace_error"][t, 0] = 10 * np.log10(npm.trace(npm.dot(C.T, C)))  # frobenius norm in dB
            # Calculate angle between projection matrixes
            D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k)
            eigVal, eigVec = npm.linalg.eig(D)
            angle = npm.arccos(np.sqrt(max(eigVal)))
            res["angle_error"][t, 0] = angle

            # Calculate deviation from orthonormality
            F = npm.dot(Qt.T, Qt) - npm.eye(m)
            res["orthog_error"][t, 0] = 10 * np.log10(npm.trace(npm.dot(F.T, F)))  # frobenius norm in dB

        # Energy thresholding
        ######################
        # check the lower bound of energy level
        if sumYSq < energy[0] * sumXSq and lastChangeAt < t - holdOffTime and m < n:
            lastChangeAt = t
            m = m + 1
            anomalies.append(t)
        # print 'Increasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq)
        # check the upper bound of energy level
        elif sumYSq > energy[1] * sumXSq and lastChangeAt < t - holdOffTime and m < n and m > 1:
            lastChangeAt = t
            m = m - 1
        # print 'Decreasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq)
        W_hist.append(W[:, :m])
    # set outputs

    # Grams smit reorthog
    if reorthog == True:
        W[:, :m], R = npm.linalg.qr(W[:, :m])

    # Data Stores
    res2 = {
        "hidden": Proj,  # Array for hidden Variables
        "E_t": np.array(E_t),  # total energy of data
        "E_dash_t": np.array(E_dash_t),  # hidden var energy
        "e_ratio": np.array(E_dash_t) / np.array(E_t),  # Energy ratio
        "rel_orth_err": relErrors,  # orthoX error
        "RSRE": RSRE,  # Relative squared Reconstruction error
        "recon": recon,  # reconstructed data
        "r_hist": k_hist,  # history of r values
        "W_hist": W_hist,  # history of Weights
        "anomalies": anomalies,
    }

    res.update(res2)

    return res
示例#42
0
def SPIRIT(streams, energyThresh, lamb, evalMetrics):

    # Make 
    if type(streams) == np.ndarray:
        streams_iter = iter(streams)

    # Max No. Streams
    if streams.ndim == 1:
        streams = np.expand_dims(streams, axis=1)
        num_streams = streams.shape[1]
    else: 
        num_streams = streams.shape[1]

    count_over = 0
    count_under = 0

#===============================================================================
#      Initalise k, w and d, lamb
#===============================================================================

    k = 1 # Hidden Variables, initialise to one 
    
    # Weights
    pc_weights = npm.zeros(num_streams)
    pc_weights[0, 0] = 1
    
    # initialise outputs
    res = {}
    all_weights = []
    k_hist = []
    anomalies = []
    x_dash = npm.zeros((1,num_streams))
    
    Eng = mat([0.00000001, 0.00000001])    
    
    E_xt = 0  # Energy of X at time t
    E_rec_i = mat([0.000000000000001]) # Energy of reconstruction

    Y = npm.zeros(num_streams)
    
    timeSteps = streams.shape[0]
    
#===============================================================================
# Main Loop 
#===============================================================================
    for t in range(1, timeSteps + 1): # t = 1,...,200

        k_hist.append(k)

        x_t_plus_1 = mat(streams_iter.next()) # Read in next signals

        d_i = E_rec_i * t

        # Step 1 - Update Weights 
        pc_weights, y_t_i, error = track_W(x_t_plus_1, 
                                               k, pc_weights, d_i,
                                               num_streams, 
                                               lamb)
        # Record hidden variables
        padding = num_streams - k
        y_bar_t = npm.hstack((y_t_i, mat([nan] * padding)))
        Y = npm.vstack((Y,y_bar_t))
        
        # Record Weights
        all_weights.append(pc_weights)  
        # Record reconstrunted z and RSRE
        x_dash = npm.vstack((x_dash, y_t_i * pc_weights))
               
        # Record RSRE
        if t == 1:
            top = 0.0
            bot = 0.0
            
        top = top + (norm(x_t_plus_1 - x_dash) ** 2 )

        bot = bot + (norm(x_t_plus_1) ** 2)
        
        new_RSRE = top / bot   
                  
        if t == 1:
            RSRE = new_RSRE
        else:                  
            RSRE = npm.vstack((RSRE, new_RSRE))

        ### FOR EVALUATION ###
        #deviation from truth
        if evalMetrics == 'T' :
            
            Qt = pc_weights.T            
            
            if t == 1 :
                res['subspace_error'] = npm.zeros((timeSteps,1))
                res['orthog_error'] = npm.zeros((timeSteps,1))                


                res['angle_error'] = npm.zeros((timeSteps,1))
                Cov_mat = npm.zeros([num_streams,num_streams])
                
            # Calculate Covarentce Matrix of data up to time t   
            Cov_mat = lamb * Cov_mat +  npm.dot(x_t_plus_1,  x_t_plus_1.T)
            # Get eigenvalues and eigenvectors             
            W , V = eig(Cov_mat)
            # Use this to sort eigenVectors in according to deccending eigenvalue
            eig_idx = W.argsort() # Get sort index
            eig_idx = eig_idx[::-1] # Reverse order (default is accending)
            # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted).
            V_k = V[:, eig_idx[:k]]          
            # Calculate subspace error        
            C = npm.dot(V_k , V_k.T) - npm.dot(Qt , Qt.T)  
            res['subspace_error'][t-1,0] = 10 * np.log10(npm.trace(npm.dot(C.T , C))) #frobenius norm in dB
        
            # Calculate angle between projection matrixes
            D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k) 
            eigVal, eigVec = eig(D)
            angle = npm.arccos(np.sqrt(max(eigVal)))        
            res['angle_error'][t-1,0] = angle        
    
            # Calculate deviation from orthonormality
            F = npm.dot(Qt.T , Qt) - npm.eye(k)
            res['orthog_error'][t-1,0] = 10 * np.log10(npm.trace(npm.dot(F.T , F))) #frobenius norm in dB
              

        # Step 2 - Update Energy estimate
        E_xt = ((lamb * (t-1) * E_xt) + norm(x_t_plus_1) ** 2) / t
    
        for i in range(k):
            E_rec_i[0, i] = ((lamb * (t-1) * E_rec_i[0, i]) + (y_t_i[0, i] ** 2)) / t

        # Step 3 - Estimate the retained energy
        E_retained = npm.sum(E_rec_i,1)
    
        # Record Energy  
        Eng_new = npm.hstack((E_xt, E_retained[0,0]))
        Eng = npm.vstack((Eng, Eng_new))
    
        if E_retained < energyThresh[0] * E_xt:
            if k != num_streams:
                k = k + 1       
                # Initalise Ek+1 <-- 0 
                E_rec_i = npm.hstack((E_rec_i, mat([0]))) 
                # Initialise W_i+1
                new_weight_vec = npm.zeros(num_streams)  
                new_weight_vec[0, k-1] = 1
                pc_weights = npm.vstack((pc_weights, new_weight_vec))
                anomalies.append(t -1)
            else:
                count_over += 1
        elif E_retained > energyThresh[1] * E_xt:
            if k > 1 :
                k = k - 1
                # discard w_k and error
                pc_weights = delete(pc_weights, -1, 0)    
                # Discard E_rec_i[k]
                E_rec_i = delete(E_rec_i, -1)
            else:
                count_under += 1
          
          
    # Data Stores
    res2 = {'hidden' :  Y,                        # Array for hidden Variables
           'weights' : all_weights,
           'E_t' : Eng[:,0],                     # total energy of data 
           'E_dash_t' : Eng[:,1],                # hidden var energy
           'e_ratio' : np.divide(Eng[:,1], Eng[:,0]),      # Energy ratio 
           'RSRE' : RSRE,                        # Relative squared Reconstruction error 
           'recon' : x_dash,                     # reconstructed data
           'r_hist' : k_hist, # history of r values 
           'anomalies' : anomalies}  
           
    res.update(res2)
              
    return res, all_weights
示例#43
0
def SPIRIT(A,
           lamb,
           energy,
           k0=1,
           holdOffTime=0,
           reorthog=False,
           evalMetrics='F'):

    A = np.mat(A)

    n = A.shape[1]
    totalTime = A.shape[0]
    Proj = npm.ones((totalTime, n)) * np.nan
    recon = npm.zeros((totalTime, n))

    # initialize w_i to unit vectors
    W = npm.eye(n)
    d = 0.01 * npm.ones((n, 1))
    m = k0  # number of eigencomponents

    relErrors = npm.zeros((totalTime, 1))

    sumYSq = 0.
    E_t = []
    sumXSq = 0.
    E_dash_t = []

    res = {}
    k_hist = []
    W_hist = []
    anomalies = []

    # incremental update W
    lastChangeAt = 0

    for t in range(totalTime):

        k_hist.append(m)

        # update W for each y_t
        x = A[t, :].T  # new data as column vector

        for j in range(m):
            W[:, j], d[j], x = updateW(x, W[:, j], d[j], lamb)
            Wj = W[:, j]

        # Grams smit reorthog
        if reorthog == True:
            W[:, :m], R = npm.linalg.qr(W[:, :m])

        # compute low-D projection, reconstruction and relative error
        Y = W[:, :m].T * A[t, :].T  # project to m-dimensional space
        xActual = A[t, :].T  # actual vector of the current time
        xProj = W[:, :m] * Y  # reconstruction of the current time
        Proj[t, :m] = Y.T
        recon[t, :] = xProj.T
        xOrth = xActual - xProj
        relErrors[t] = npm.sum(npm.power(xOrth, 2)) / npm.sum(
            npm.power(xActual, 2))

        # update energy
        sumYSq = lamb * sumYSq + npm.sum(npm.power(Y, 2))
        E_dash_t.append(sumYSq)
        sumXSq = lamb * sumXSq + npm.sum(npm.power(A[t, :], 2))
        E_t.append(sumXSq)

        # Record RSRE
        if t == 0:
            top = 0.0
            bot = 0.0

        top = top + npm.power(npm.linalg.norm(xActual - xProj), 2)

        bot = bot + npm.power(npm.linalg.norm(xActual), 2)

        new_RSRE = top / bot

        if t == 0:
            RSRE = new_RSRE
        else:
            RSRE = npm.vstack((RSRE, new_RSRE))

        ### Metric EVALUATION ###
        #deviation from truth
        if evalMetrics == 'T':

            Qt = W[:, :m]

            if t == 0:
                res['subspace_error'] = npm.zeros((totalTime, 1))
                res['orthog_error'] = npm.zeros((totalTime, 1))
                res['angle_error'] = npm.zeros((totalTime, 1))
                Cov_mat = npm.zeros([n, n])

            # Calculate Covarentce Matrix of data up to time t
            Cov_mat = lamb * Cov_mat + npm.dot(xActual, xActual.T)
            # Get eigenvalues and eigenvectors
            WW, V = npm.linalg.eig(Cov_mat)
            # Use this to sort eigenVectors in according to deccending eigenvalue
            eig_idx = WW.argsort()  # Get sort index
            eig_idx = eig_idx[::-1]  # Reverse order (default is accending)
            # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted).
            V_k = V[:, eig_idx[:m]]
            # Calculate subspace error
            C = npm.dot(V_k, V_k.T) - npm.dot(Qt, Qt.T)
            res['subspace_error'][t, 0] = 10 * np.log10(
                npm.trace(npm.dot(C.T, C)))  #frobenius norm in dB
            # Calculate angle between projection matrixes
            D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k)
            eigVal, eigVec = npm.linalg.eig(D)
            angle = npm.arccos(np.sqrt(max(eigVal)))
            res['angle_error'][t, 0] = angle

            # Calculate deviation from orthonormality
            F = npm.dot(Qt.T, Qt) - npm.eye(m)
            res['orthog_error'][t, 0] = 10 * np.log10(
                npm.trace(npm.dot(F.T, F)))  #frobenius norm in dB

        # Energy thresholding
        ######################
        # check the lower bound of energy level
        if sumYSq < energy[
                0] * sumXSq and lastChangeAt < t - holdOffTime and m < n:
            lastChangeAt = t
            m = m + 1
            anomalies.append(t)
        # print 'Increasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq)
        # check the upper bound of energy level
        elif sumYSq > energy[
                1] * sumXSq and lastChangeAt < t - holdOffTime and m < n and m > 1:
            lastChangeAt = t
            m = m - 1
        # print 'Decreasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq)
        W_hist.append(W[:, :m])
    # set outputs

    # Grams smit reorthog
    if reorthog == True:
        W[:, :m], R = npm.linalg.qr(W[:, :m])

    # Data Stores
    res2 = {
        'hidden': Proj,  # Array for hidden Variables
        'E_t': np.array(E_t),  # total energy of data 
        'E_dash_t': np.array(E_dash_t),  # hidden var energy
        'e_ratio': np.array(E_dash_t) / np.array(E_t),  # Energy ratio 
        'rel_orth_err': relErrors,  # orthoX error
        'RSRE': RSRE,  # Relative squared Reconstruction error 
        'recon': recon,  # reconstructed data
        'r_hist': k_hist,  # history of r values 
        'W_hist': W_hist,  # history of Weights
        'anomalies': anomalies
    }

    res.update(res2)

    return res
示例#44
0
def MMAPPH1FCFS(D, sigma, S, *argv):
    """
    Returns various performane measures of a MMAP[K]/PH[K]/1 
    first-come-first-serve queue, see [1]_.
    
    Parameters
    ----------
    D : list of matrices of shape (N,N), length (K+1)
        The D0...DK matrices of the arrival process.
    sigma : list of row vectors, length (K)
        The list containing the initial probability vectors of the service
        time distributions of the various customer types. The length of the
       vectors does not have to be the same.
    S : list of square matrices, length (K)
        The transient generators of the phase type distributions representing
        the service time of the jobs belonging to various types.
    further parameters : 
        The rest of the function parameters specify the options
        and the performance measures to be computed.
    
        The supported performance measures and options in this 
        function are:
    
        +----------------+--------------------+----------------------------------------+
        | Parameter name | Input parameters   | Output                                 |
        +================+====================+========================================+
        | "ncMoms"       | Number of moments  | The moments of the number of customers |
        +----------------+--------------------+----------------------------------------+
        | "ncDistr"      | Upper limit K      | The distribution of the number of      |
        |                |                    | customers from level 0 to level K-1    |
        +----------------+--------------------+----------------------------------------+
        | "stMoms"       | Number of moments  | The sojourn time moments               |
        +----------------+--------------------+----------------------------------------+
        | "stDistr"      | A vector of points | The sojourn time distribution at the   |
        |                |                    | requested points (cummulative, cdf)    |
        +----------------+--------------------+----------------------------------------+
        | "stDistrME"    | None               | The vector-matrix parameters of the    |
        |                |                    | matrix-exponentially distributed       |
        |                |                    | sojourn time distribution              |
        +----------------+--------------------+----------------------------------------+
        | "stDistrPH"    | None               | The vector-matrix parameters of the    |
        |                |                    | matrix-exponentially distributed       |
        |                |                    | sojourn time distribution, converted   |
        |                |                    | to a continuous PH representation      |
        +----------------+--------------------+----------------------------------------+
        | "prec"         | The precision      | Numerical precision used as a stopping |
        |                |                    | condition when solving the Riccati     |
        |                |                    | equation                               |
        +----------------+--------------------+----------------------------------------+
        | "classes"      | Vector of integers | Only the performance measures          |
        |                |                    | belonging to these classes are         |
        |                |                    | returned. If not given, all classes    |
        |                |                    | are analyzed.                          |
        +----------------+--------------------+----------------------------------------+
        
        (The quantities related to the number of customers in 
        the system include the customer in the server, and the 
        sojourn time related quantities include the service 
        times as well)
    
    Returns
    -------
    Ret : list of the performance measures
        Each entry of the list corresponds to a performance 
        measure requested. Each entry is a matrix, where the
        columns belong to the various job types.
        If there is just a single item, 
        then it is not put into a list.
    
    References
    ----------
    .. [1] Qiming He, "Analysis of a continuous time 
           SM[K]/PH[K]/1/FCFS queue: Age process, sojourn times,
           and queue lengths", Journal of Systems Science and 
           Complexity, 25(1), pp 133-155, 2012.
    """

    K = len(D) - 1

    # parse options
    eaten = []
    precision = 1e-14
    classes = np.arange(0, K)
    for i in range(len(argv)):
        if argv[i] == "prec":
            precision = argv[i + 1]
            eaten.append(i)
            eaten.append(i + 1)
        elif argv[i] == "classes":
            classes = np.array(argv[i + 1]) - 1
            eaten.append(i)
            eaten.append(i + 1)

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            'MMAPPH1FCFS: The arrival process is not a valid MMAP representation!'
        )

    if butools.checkInput:
        for k in range(K):
            if not CheckPHRepresentation(sigma[k], S[k]):
                raise Exception(
                    'MMAPPH1FCFS: the vector and matrix describing the service times is not a valid PH representation!'
                )

    # some preparation
    D0 = D[0]
    N = D0.shape[0]
    Ia = ml.eye(N)
    Da = ml.zeros((N, N))
    for q in range(K):
        Da += D[q + 1]
    theta = CTMCSolve(D0 + Da)
    beta = [CTMCSolve(S[k] + ml.sum(-S[k], 1) * sigma[k]) for k in range(K)]
    lambd = [np.sum(theta * D[k + 1]) for k in range(K)]
    mu = [np.sum(beta[k] * (-S[k])) for k in range(K)]
    Nsk = [S[k].shape[0] for k in range(K)]
    ro = np.sum(np.array(lambd) / np.array(mu))
    alpha = theta * Da / sum(lambd)
    D0i = (-D0).I

    Sa = S[0]
    sa = [ml.zeros(sigma[0].shape)] * K
    sa[0] = sigma[0]
    ba = [ml.zeros(beta[0].shape)] * K
    ba[0] = beta[0]
    sv = [ml.zeros((Nsk[0], 1))] * K
    sv[0] = ml.sum(-S[0], 1)
    Pk = [D0i * D[q + 1] for q in range(K)]

    for k in range(1, K):
        Sa = la.block_diag(Sa, S[k])
        for q in range(K):
            if q == k:
                sa[q] = ml.hstack((sa[q], sigma[k]))
                ba[q] = ml.hstack((ba[q], beta[k]))
                sv[q] = ml.vstack((sv[q], -np.sum(S[k], 1)))
            else:
                sa[q] = ml.hstack((sa[q], ml.zeros(sigma[k].shape)))
                ba[q] = ml.hstack((ba[q], ml.zeros(beta[k].shape)))
                sv[q] = ml.vstack((sv[q], ml.zeros((Nsk[k], 1))))
    Sa = ml.matrix(Sa)
    P = D0i * Da
    iVec = ml.kron(D[1], sa[0])
    for k in range(1, K):
        iVec += ml.kron(D[k + 1], sa[k])
    Ns = Sa.shape[0]
    Is = ml.eye(Ns)

    # step 1. solve the age process of the queue
    # ==========================================

    # solve Y0 and calculate T
    Y0 = FluidFundamentalMatrices(ml.kron(Ia, Sa), ml.kron(Ia, -ml.sum(Sa, 1)),
                                  iVec, D0, "P", precision)
    T = ml.kron(Ia, Sa) + Y0 * iVec

    # calculate pi0 and v0
    pi0 = ml.zeros((1, T.shape[0]))
    for k in range(K):
        pi0 += ml.kron(theta * D[k + 1], ba[k] / mu[k])
    pi0 = -pi0 * T

    iT = (-T).I
    oa = ml.ones((N, 1))

    # step 2. calculate performance measures
    # ======================================
    Ret = []
    for k in classes:
        argIx = 0
        clo = iT * ml.kron(oa, sv[k])
        while argIx < len(argv):
            if argIx in eaten:
                argIx += 1
                continue
            elif type(argv[argIx]) is str and argv[argIx] == "stMoms":
                numOfSTMoms = argv[argIx + 1]
                rtMoms = []
                for m in range(1, numOfSTMoms + 1):
                    rtMoms.append(
                        math.factorial(m) * np.sum(pi0 * iT**m * clo /
                                                   (pi0 * clo)))
                Ret.append(rtMoms)
                argIx += 1
            elif type(argv[argIx]) is str and argv[argIx] == "stDistr":
                stCdfPoints = argv[argIx + 1]
                cdf = []
                for t in stCdfPoints:
                    pr = 1 - np.sum(pi0 * la.expm(T * t) * clo / (pi0 * clo))
                    cdf.append(pr)
                Ret.append(np.array(cdf))
                argIx += 1
            elif type(argv[argIx]) is str and argv[argIx] == "stDistrME":
                Bm = SimilarityMatrixForVectors(clo / (pi0 * clo),
                                                ml.ones((N * Ns, 1)))
                Bmi = Bm.I
                A = Bm * T * Bmi
                alpha = pi0 * Bmi
                Ret.append(alpha)
                Ret.append(A)
            elif type(argv[argIx]) is str and argv[argIx] == "stDistrPH":
                vv = pi0 * iT
                ix = np.arange(N * Ns)
                nz = ix[vv.flat > precision]
                delta = Diag(vv[:, nz])
                cl = -T * clo / (pi0 * clo)
                alpha = cl[nz, :].T * delta
                A = delta.I * T[nz, :][:, nz].T * delta
                Ret.append(alpha)
                Ret.append(A)
            elif type(argv[argIx]) is str and argv[argIx] == "ncDistr":
                numOfQLProbs = argv[argIx + 1]
                argIx += 1
                values = np.empty(numOfQLProbs)
                jm = ml.zeros((Ns, 1))
                jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 1
                jmc = ml.ones((Ns, 1))
                jmc[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 0
                LmCurr = la.solve_sylvester(T, ml.kron(D0 + Da - D[k + 1], Is),
                                            -ml.eye(N * Ns))
                values[0] = 1 - ro + np.sum(pi0 * LmCurr * ml.kron(oa, jmc))
                for i in range(1, numOfQLProbs):
                    LmPrev = LmCurr
                    LmCurr = la.solve_sylvester(
                        T, ml.kron(D0 + Da - D[k + 1], Is),
                        -LmPrev * ml.kron(D[k + 1], Is))
                    values[i] = np.sum(pi0 * LmCurr * ml.kron(oa, jmc) +
                                       pi0 * LmPrev * ml.kron(oa, jm))
                Ret.append(values)
            elif type(argv[argIx]) is str and argv[argIx] == "ncMoms":
                numOfQLMoms = argv[argIx + 1]
                argIx += 1
                jm = ml.zeros((Ns, 1))
                jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 1
                ELn = [
                    la.solve_sylvester(T, ml.kron(D0 + Da, Is),
                                       -ml.eye(N * Ns))
                ]
                qlMoms = []
                for n in range(1, numOfQLMoms + 1):
                    bino = 1
                    Btag = ml.zeros((N * Ns, N * Ns))
                    for i in range(n):
                        Btag += bino * ELn[i]
                        bino *= (n - i) / (i + 1)
                    ELn.append(
                        la.solve_sylvester(T, ml.kron(D0 + Da, Is),
                                           -Btag * ml.kron(D[k + 1], Is)))
                    qlMoms.append(
                        np.sum(pi0 * ELn[n]) +
                        np.sum(pi0 * Btag * ml.kron(oa, jm)))
                Ret.append(qlMoms)
            else:
                raise Exception("MMAPPH1FCFS: Unknown parameter " +
                                str(argv[argIx]))
            argIx += 1

    if len(Ret) == 1:
        return Ret[0]
    else:
        return Ret
示例#45
0
def SPIRIT(streams, energyThresh, lamb, evalMetrics):

    # Make
    if type(streams) == np.ndarray:
        streams_iter = iter(streams)

    # Max No. Streams
    if streams.ndim == 1:
        streams = np.expand_dims(streams, axis=1)
        num_streams = streams.shape[1]
    else:
        num_streams = streams.shape[1]

    count_over = 0
    count_under = 0

    #===============================================================================
    #      Initalise k, w and d, lamb
    #===============================================================================

    k = 1  # Hidden Variables, initialise to one

    # Weights
    pc_weights = npm.zeros(num_streams)
    pc_weights[0, 0] = 1

    # initialise outputs
    res = {}
    all_weights = []
    k_hist = []
    anomalies = []
    x_dash = npm.zeros((1, num_streams))

    Eng = mat([0.00000001, 0.00000001])

    E_xt = 0  # Energy of X at time t
    E_rec_i = mat([0.000000000000001])  # Energy of reconstruction

    Y = npm.zeros(num_streams)

    timeSteps = streams.shape[0]

    #===============================================================================
    # Main Loop
    #===============================================================================
    for t in range(1, timeSteps + 1):  # t = 1,...,200

        k_hist.append(k)

        x_t_plus_1 = mat(streams_iter.next())  # Read in next signals

        d_i = E_rec_i * t

        # Step 1 - Update Weights
        pc_weights, y_t_i, error = track_W(x_t_plus_1, k, pc_weights, d_i,
                                           num_streams, lamb)
        # Record hidden variables
        padding = num_streams - k
        y_bar_t = npm.hstack((y_t_i, mat([nan] * padding)))
        Y = npm.vstack((Y, y_bar_t))

        # Record Weights
        all_weights.append(pc_weights)
        # Record reconstrunted z and RSRE
        x_dash = npm.vstack((x_dash, y_t_i * pc_weights))

        # Record RSRE
        if t == 1:
            top = 0.0
            bot = 0.0

        top = top + (norm(x_t_plus_1 - x_dash)**2)

        bot = bot + (norm(x_t_plus_1)**2)

        new_RSRE = top / bot

        if t == 1:
            RSRE = new_RSRE
        else:
            RSRE = npm.vstack((RSRE, new_RSRE))

        ### FOR EVALUATION ###
        #deviation from truth
        if evalMetrics == 'T':

            Qt = pc_weights.T

            if t == 1:
                res['subspace_error'] = npm.zeros((timeSteps, 1))
                res['orthog_error'] = npm.zeros((timeSteps, 1))

                res['angle_error'] = npm.zeros((timeSteps, 1))
                Cov_mat = npm.zeros([num_streams, num_streams])

            # Calculate Covarentce Matrix of data up to time t
            Cov_mat = lamb * Cov_mat + npm.dot(x_t_plus_1, x_t_plus_1.T)
            # Get eigenvalues and eigenvectors
            W, V = eig(Cov_mat)
            # Use this to sort eigenVectors in according to deccending eigenvalue
            eig_idx = W.argsort()  # Get sort index
            eig_idx = eig_idx[::-1]  # Reverse order (default is accending)
            # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted).
            V_k = V[:, eig_idx[:k]]
            # Calculate subspace error
            C = npm.dot(V_k, V_k.T) - npm.dot(Qt, Qt.T)
            res['subspace_error'][t - 1, 0] = 10 * np.log10(
                npm.trace(npm.dot(C.T, C)))  #frobenius norm in dB

            # Calculate angle between projection matrixes
            D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k)
            eigVal, eigVec = eig(D)
            angle = npm.arccos(np.sqrt(max(eigVal)))
            res['angle_error'][t - 1, 0] = angle

            # Calculate deviation from orthonormality
            F = npm.dot(Qt.T, Qt) - npm.eye(k)
            res['orthog_error'][t - 1, 0] = 10 * np.log10(
                npm.trace(npm.dot(F.T, F)))  #frobenius norm in dB

        # Step 2 - Update Energy estimate
        E_xt = ((lamb * (t - 1) * E_xt) + norm(x_t_plus_1)**2) / t

        for i in range(k):
            E_rec_i[0, i] = ((lamb * (t - 1) * E_rec_i[0, i]) +
                             (y_t_i[0, i]**2)) / t

        # Step 3 - Estimate the retained energy
        E_retained = npm.sum(E_rec_i, 1)

        # Record Energy
        Eng_new = npm.hstack((E_xt, E_retained[0, 0]))
        Eng = npm.vstack((Eng, Eng_new))

        if E_retained < energyThresh[0] * E_xt:
            if k != num_streams:
                k = k + 1
                # Initalise Ek+1 <-- 0
                E_rec_i = npm.hstack((E_rec_i, mat([0])))
                # Initialise W_i+1
                new_weight_vec = npm.zeros(num_streams)
                new_weight_vec[0, k - 1] = 1
                pc_weights = npm.vstack((pc_weights, new_weight_vec))
                anomalies.append(t - 1)
            else:
                count_over += 1
        elif E_retained > energyThresh[1] * E_xt:
            if k > 1:
                k = k - 1
                # discard w_k and error
                pc_weights = delete(pc_weights, -1, 0)
                # Discard E_rec_i[k]
                E_rec_i = delete(E_rec_i, -1)
            else:
                count_under += 1

    # Data Stores
    res2 = {
        'hidden': Y,  # Array for hidden Variables
        'weights': all_weights,
        'E_t': Eng[:, 0],  # total energy of data 
        'E_dash_t': Eng[:, 1],  # hidden var energy
        'e_ratio': np.divide(Eng[:, 1], Eng[:, 0]),  # Energy ratio 
        'RSRE': RSRE,  # Relative squared Reconstruction error 
        'recon': x_dash,  # reconstructed data
        'r_hist': k_hist,  # history of r values 
        'anomalies': anomalies
    }

    res.update(res2)

    return res, all_weights
示例#46
0
def MMAPPH1FCFS(D, sigma, S, *argv):
    """
    Returns various performane measures of a MMAP[K]/PH[K]/1 
    first-come-first-serve queue, see [1]_.
    
    Parameters
    ----------
    D : list of matrices of shape (N,N), length (K+1)
        The D0...DK matrices of the arrival process.
    sigma : list of row vectors, length (K)
        The list containing the initial probability vectors of the service
        time distributions of the various customer types. The length of the
       vectors does not have to be the same.
    S : list of square matrices, length (K)
        The transient generators of the phase type distributions representing
        the service time of the jobs belonging to various types.
    further parameters : 
        The rest of the function parameters specify the options
        and the performance measures to be computed.
    
        The supported performance measures and options in this 
        function are:
    
        +----------------+--------------------+----------------------------------------+
        | Parameter name | Input parameters   | Output                                 |
        +================+====================+========================================+
        | "ncMoms"       | Number of moments  | The moments of the number of customers |
        +----------------+--------------------+----------------------------------------+
        | "ncDistr"      | Upper limit K      | The distribution of the number of      |
        |                |                    | customers from level 0 to level K-1    |
        +----------------+--------------------+----------------------------------------+
        | "stMoms"       | Number of moments  | The sojourn time moments               |
        +----------------+--------------------+----------------------------------------+
        | "stDistr"      | A vector of points | The sojourn time distribution at the   |
        |                |                    | requested points (cummulative, cdf)    |
        +----------------+--------------------+----------------------------------------+
        | "stDistrME"    | None               | The vector-matrix parameters of the    |
        |                |                    | matrix-exponentially distributed       |
        |                |                    | sojourn time distribution              |
        +----------------+--------------------+----------------------------------------+
        | "stDistrPH"    | None               | The vector-matrix parameters of the    |
        |                |                    | matrix-exponentially distributed       |
        |                |                    | sojourn time distribution, converted   |
        |                |                    | to a continuous PH representation      |
        +----------------+--------------------+----------------------------------------+
        | "prec"         | The precision      | Numerical precision used as a stopping |
        |                |                    | condition when solving the Riccati     |
        |                |                    | equation                               |
        +----------------+--------------------+----------------------------------------+
        | "classes"      | Vector of integers | Only the performance measures          |
        |                |                    | belonging to these classes are         |
        |                |                    | returned. If not given, all classes    |
        |                |                    | are analyzed.                          |
        +----------------+--------------------+----------------------------------------+
        
        (The quantities related to the number of customers in 
        the system include the customer in the server, and the 
        sojourn time related quantities include the service 
        times as well)
    
    Returns
    -------
    Ret : list of the performance measures
        Each entry of the list corresponds to a performance 
        measure requested. Each entry is a matrix, where the
        columns belong to the various job types.
        If there is just a single item, 
        then it is not put into a list.
    
    References
    ----------
    .. [1] Qiming He, "Analysis of a continuous time 
           SM[K]/PH[K]/1/FCFS queue: Age process, sojourn times,
           and queue lengths", Journal of Systems Science and 
           Complexity, 25(1), pp 133-155, 2012.
    """
    
    K = len(D)-1

    # parse options
    eaten = []
    precision = 1e-14;
    classes = np.arange(0,K)
    for i in range(len(argv)):
        if argv[i]=="prec":
            precision = argv[i+1]
            eaten.append(i)
            eaten.append(i+1) 
        elif argv[i]=="classes":
            classes = np.array(argv[i+1])-1
            eaten.append(i)
            eaten.append(i+1) 
    
    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception('MMAPPH1FCFS: The arrival process is not a valid MMAP representation!')
    
    if butools.checkInput:
        for k in range(K):
            if not CheckPHRepresentation(sigma[k],S[k]):
                raise Exception('MMAPPH1FCFS: the vector and matrix describing the service times is not a valid PH representation!')

    # some preparation
    D0 = D[0]
    N = D0.shape[0]
    Ia = ml.eye(N);
    Da = ml.zeros((N,N))
    for q in range(K):
        Da += D[q+1]
    theta = CTMCSolve(D0+Da)
    beta = [CTMCSolve(S[k]+ml.sum(-S[k],1)*sigma[k]) for k in range(K)]
    lambd = [np.sum(theta*D[k+1]) for k in range(K)]    
    mu = [np.sum(beta[k]*(-S[k])) for k in range(K)]
    Nsk = [S[k].shape[0] for k in range(K)]    
    ro = np.sum(np.array(lambd)/np.array(mu))
    alpha = theta*Da/sum(lambd)
    D0i = (-D0).I

    Sa = S[0];
    sa = [ml.zeros(sigma[0].shape)]*K
    sa[0] = sigma[0]
    ba = [ml.zeros(beta[0].shape)]*K
    ba[0] = beta[0]
    sv = [ml.zeros((Nsk[0],1))]*K
    sv[0] = ml.sum(-S[0],1)
    Pk = [D0i*D[q+1] for q in range(K)]

    for k in range(1,K):
        Sa = la.block_diag(Sa, S[k])
        for q in range(K):
            if q==k:
                sa[q] = ml.hstack((sa[q], sigma[k]))
                ba[q] = ml.hstack((ba[q], beta[k]))
                sv[q] = ml.vstack((sv[q], -np.sum(S[k],1)))
            else:
                sa[q] = ml.hstack((sa[q], ml.zeros(sigma[k].shape)))
                ba[q] = ml.hstack((ba[q], ml.zeros(beta[k].shape)))
                sv[q] = ml.vstack((sv[q], ml.zeros((Nsk[k],1))))
    Sa = ml.matrix(Sa)
    P = D0i*Da
    iVec = ml.kron(D[1],sa[0])
    for k in range(1,K):
        iVec += ml.kron(D[k+1],sa[k])
    Ns = Sa.shape[0]
    Is = ml.eye(Ns)
    
    # step 1. solve the age process of the queue
    # ==========================================

    # solve Y0 and calculate T
    Y0 = FluidFundamentalMatrices (ml.kron(Ia,Sa), ml.kron(Ia,-ml.sum(Sa,1)), iVec, D0, "P", precision)
    T = ml.kron(Ia,Sa) + Y0 * iVec
    
    # calculate pi0 and v0
    pi0 = ml.zeros((1,T.shape[0]))
    for k in range(K):
        pi0 += ml.kron(theta*D[k+1],ba[k]/mu[k])
    pi0 = - pi0 * T

    iT = (-T).I
    oa = ml.ones((N,1))

    # step 2. calculate performance measures
    # ======================================
    Ret = []
    for k in classes:
        argIx = 0
        clo = iT*ml.kron(oa,sv[k])
        while argIx<len(argv):
            if argIx in eaten:
                argIx += 1
                continue
            elif type(argv[argIx]) is str and argv[argIx]=="stMoms":
                numOfSTMoms = argv[argIx+1]
                rtMoms = []
                for m in range(1,numOfSTMoms+1):
                    rtMoms.append(math.factorial(m) * np.sum(pi0 * iT**m * clo / (pi0*clo)))
                Ret.append(rtMoms)
                argIx += 1
            elif type(argv[argIx]) is str and argv[argIx]=="stDistr":
                stCdfPoints = argv[argIx+1]
                cdf = [];
                for t in stCdfPoints:
                    pr = 1 - np.sum(pi0 * la.expm(T*t) * clo / (pi0*clo))
                    cdf.append(pr)
                Ret.append(np.array(cdf))
                argIx += 1
            elif type(argv[argIx]) is str and argv[argIx]=="stDistrME":
                Bm = SimilarityMatrixForVectors(clo/(pi0*clo),ml.ones((N*Ns,1)))
                Bmi = Bm.I
                A = Bm * T * Bmi
                alpha = pi0 * Bmi
                Ret.append(alpha)
                Ret.append(A)
            elif type(argv[argIx]) is str and argv[argIx]=="stDistrPH":
                vv = pi0*iT
                ix = np.arange(N*Ns)
                nz = ix[vv.flat>precision]
                delta = Diag(vv[:,nz])
                cl = -T*clo/(pi0*clo)
                alpha = cl[nz,:].T*delta
                A = delta.I*T[nz,:][:,nz].T*delta
                Ret.append(alpha)
                Ret.append(A)
            elif type(argv[argIx]) is str and argv[argIx]=="ncDistr":
                numOfQLProbs = argv[argIx+1]
                argIx += 1
                values = np.empty(numOfQLProbs)
                jm = ml.zeros((Ns,1))
                jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k+1]),:] = 1
                jmc = ml.ones((Ns,1))
                jmc[np.sum(Nsk[0:k]):np.sum(Nsk[0:k+1]),:] = 0
                LmCurr = la.solve_sylvester(T, ml.kron(D0+Da-D[k+1],Is), -ml.eye(N*Ns))
                values[0] = 1-ro+np.sum(pi0*LmCurr*ml.kron(oa,jmc))
                for i in range(1,numOfQLProbs):
                    LmPrev = LmCurr
                    LmCurr = la.solve_sylvester(T, ml.kron(D0+Da-D[k+1],Is), -LmPrev*ml.kron(D[k+1],Is))
                    values[i] = np.sum(pi0*LmCurr*ml.kron(oa,jmc) + pi0*LmPrev*ml.kron(oa,jm));
                Ret.append(values)
            elif type(argv[argIx]) is str and argv[argIx]=="ncMoms":
                numOfQLMoms = argv[argIx+1]
                argIx += 1
                jm = ml.zeros((Ns,1))
                jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k+1]),:] = 1
                ELn = [la.solve_sylvester(T, ml.kron(D0+Da,Is), -ml.eye(N*Ns))]
                qlMoms = []
                for n in range(1,numOfQLMoms+1):
                    bino = 1
                    Btag = ml.zeros((N*Ns,N*Ns))
                    for i in range(n):
                        Btag += bino * ELn[i]
                        bino *= (n-i) / (i+1)
                    ELn.append(la.solve_sylvester(T, ml.kron(D0+Da,Is), -Btag*ml.kron(D[k+1],Is)))
                    qlMoms.append(np.sum(pi0*ELn[n]) + np.sum(pi0*Btag*ml.kron(oa,jm)))
                Ret.append(qlMoms)
            else:
                raise Exception("MMAPPH1FCFS: Unknown parameter "+str(argv[argIx]))
            argIx += 1

    if len(Ret)==1:
        return Ret[0]
    else:
        return Ret