示例#1
0
def PolyGCD(a: numpy.array, b: numpy.array):
    """Iterative Greatest Common Divisor  for polynomial"""

    # if len(a) < len(b):
    #     a, b = b, a
    x, xt, y, yt = (1, ), (0, ), (0, ), (1, )
    while any(num != 0.0 for num in b):
        q = polydiv(a, b)[0]
        a, b = b, polydiv(a, b)[1]
        x, xt = xt, polysub(x, polymul(xt, q))
        y, yt = yt, polysub(y, polymul(yt, q))
    return a, x, y
def dbl(x, n, q):
    dist = [-1, 0, 1]
    prob = [0.25, 0.5, 0.25]
    e = np.random.choice(dist, n, p=prob)
    dbl_x = (2 * x) % (2 * q)
    dbl_x = p.polysub(dbl_x, e) % (2 * q)
    return dbl_x
示例#3
0
def get_der_rational(num, den):
    dnum = poly.polyder(num)
    dden = poly.polyder(den)
    dnum_den = poly.polymul(dnum, den)
    dden_num = poly.polymul(num, dden)
    num_new = poly.polysub(dnum_den, dden_num)
    den_new = poly.polymul(den, den)
    return (num_new, den_new)
示例#4
0
 def test_polysub(self) :
     for i in range(5) :
         for j in range(5) :
             msg = "At i=%d, j=%d" % (i,j)
             tgt = np.zeros(max(i,j) + 1)
             tgt[i] += 1
             tgt[j] -= 1
             res = poly.polysub([0]*i + [1], [0]*j + [1])
             assert_equal(trim(res), trim(tgt), err_msg=msg)
示例#5
0
 def compute_polynomials(self, U):
     p_unit = (0, 1)
     p = []
     p.append((1))
     p_k_1_1 = P.polymul(p_unit, p[0])
     p_k_1_2 = P.polymul(U[0, 0], p[0])
     p_new = (1 / U[0, 1]) * P.polysub(p_k_1_1, p_k_1_2)
     p.append(p_new)
     for k in range(2,self.dim):
         #print(k)
         p_k_1_1 = P.polymul(p_unit, p[k-1])
         p_k_1_2 = P.polymul(U[k-1,k-1], p[k-1])
         p_k_2 = P.polymul(U[k-1,k-2], p[k-2])
         p_new = (1/U[k-1,k])*P.polysub( P.polysub(p_k_1_1, p_k_1_2), p_k_2 )
         p.append(p_new)
     self.p = p
     self.p_n = P.polyadd(P.polymul(-U[self.dim-2,self.dim-1], p[self.dim-2]), P.polymul(P.polysub(p_unit, U[self.dim-1,self.dim-1]), p[self.dim-1]))
     return p
示例#6
0
 def test_polysub(self):
     for i in range(5):
         for j in range(5):
             msg = "At i=%d, j=%d" % (i, j)
             tgt = np.zeros(max(i, j) + 1)
             tgt[i] += 1
             tgt[j] -= 1
             res = poly.polysub([0] * i + [1], [0] * j + [1])
             assert_equal(trim(res), trim(tgt), err_msg=msg)
示例#7
0
def berlekampTest(prime, poly):
    m = len(poly) - 1
    u = [0, 1]
    for i in range(0, m // 2):
        u = P.polydiv(P.polypow(u, prime), poly)[1] % prime
        d = gcd(P.polysub(u, [0, 1]) % prime, poly, prime)
        #print(P.polysub(u, [0, 1]) % prime, poly, d)
        if not np.array_equal(np.array([1.]), d):
            return False
    return True
示例#8
0
def PolyGCD_rec(a: numpy.array, b: numpy.array):
    """Recursive Greatest Common Divisor  for polynomial"""

    if all(num == 0.0 for num in a):
        return b, 0, 1
    t = polydiv(b, a)
    d, x1, y1 = PolyGCD_rec(t[1], a)
    x = polysub(y1, polymul(t[0], x1))
    y = x1
    return d, x, y
    def deriv(self):
        """ compute first derivative

        Returns
        -------
        dPP : PseudoPolynomial
            d(PP)/dx represented as a PseudoPolynomial
        """
        dp = pol.polyder(self.p)
        dq = pol.polyder(self.q)


        p = pol.polysub(pol.polymul((1, 0, -1), dp),
                        pol.polymul((0, 2 * self.r), self.p))
        q = pol.polysub(pol.polymul((1, 0, -1), dq),
                        pol.polymul((0, 2 * self.r + 1), self.q))
        r = self.r - 1

        return PseudoPolynomial(p=remove_zeros(p), q=remove_zeros(q), r=r)
示例#10
0
def impinvar_causal(*args, **kwargs):
	"""causal version of impinvar, h[0] == 0"""

	# polynomial.polysub is ordered from lowest to highest
	from numpy.polynomial.polynomial import polysub

	bz, az = impinvar(*args, **kwargs)

	h0 = bz[0] / az[0]
	bz = polysub(bz, h0 * az)
	return bz, az
def impinvar_causal(*args, **kwargs):
    """causal version of impinvar, h[0] == 0"""

    # polynomial.polysub is ordered from lowest to highest
    from numpy.polynomial.polynomial import polysub

    bz, az = impinvar(*args, **kwargs)

    h0 = bz[0] / az[0]
    bz = polysub(bz, h0 * az)
    return bz, az
    def root_finding_poly(self):
        """
        R = p^2 - (1 - x^2) * q^2

        Returns
        -------
        coef : np.ndarray
            Coefficients of a root-finding polynomial `R(x)`. Every zero of
            the `PseudoPolynomial` is also a zero of `R(x)`.
        """
        return remove_zeros(pol.polysub(pol.polymul(self.p, self.p),
                                        pol.polymul(pol.polymul(self.q, self.q),
                                                    (1, 0, -1))))
示例#13
0
        c1[i] = rand.randint(-5, 5)
    for i in range(len(c2)):
        c2[i] = rand.randint(-5, 5)

    # TESTING ADDITION FUNCTION
    a = P.polyadd(c1, c2).tolist()
    b = q.addPoly(c1, c2)
    if (a != b):
        print "Failed on Case:"
        print "a add b"
        print "a", a
        print "b", b
        break

# TESTING SUBTRACTION FUNCTION
    a = P.polysub(c1, c2).tolist()
    b = q.subPoly(c1, c2)
    if (a != b):
        print "Failed on Case:"
        print "a subtract b"
        print "a", a
        print "b", b
        break

    # TESTING MULTIPLICATION FUNCTION
    a = P.polymul(c1, c2).tolist()
    b = q.multPoly(c1, c2)
    if (a != b):
        print "Failed on Case:"
        print "a * b"
        print "a", a
示例#14
0
文件: __init__.py 项目: Bankq/CS6998
def polysub(c1, c2):
    from numpy.polynomial.polynomial import polysub
    return polysub(c1, c2)
示例#15
0
def longitudinal(velocity, density, S_gross_w, mac, Cm_q, Cz_alpha, mass, Cm_alpha, Iy, Cm_alpha_dot, Cz_u, Cz_alpha_dot, Cz_q, Cw, Theta, Cx_u, Cx_alpha):
    """ output = SUAVE.Methods.Flight_Dynamics.Dynamic_Stablity.Full_Linearized_Equations.longitudinal(velocity, density, S_gross_w, mac, Cm_q, Cz_alpha, mass, Cm_alpha, Iy, Cm_alpha_dot, Cz_u, Cz_alpha_dot, Cz_q, Cw, Theta, Cx_u, Cx_alpha)
        Calculate the natural frequency and damping ratio for the full linearized short period and phugoid modes        
        
        Inputs:
            velocity - flight velocity at the condition being considered [meters/seconds]
            density - flight density at condition being considered [kg/meters**3]
            S_gross_w - area of the wing [meters**2]
            mac - mean aerodynamic chord of the wing [meters]
            Cm_q - coefficient for the change in pitching moment due to pitch rate [dimensionless] (2 * K * dC_m/di * lt/c where K is approximately 1.1)
            Cz_alpha - coefficient for the change in Z force due to the angle of attack [dimensionless] (-C_D - dC_L/dalpha)
            mass - mass of the aircraft [kilograms]
            Cm_alpha - coefficient for the change in pitching moment due to angle of attack [dimensionless] (dC_m/dC_L * dCL/dalpha)
            Iy - moment of interia about the body y axis [kg * meters**2]
            Cm_alpha_dot - coefficient for the change in pitching moment due to rate of change of angle of attack [dimensionless] (2 * dC_m/di * depsilon/dalpha * lt/mac)
            Cz_u - coefficient for the change in force in the Z direction due to change in forward velocity [dimensionless] (usually -2 C_L or -2C_L - U dC_L/du)
            Cz_alpha_dot - coefficient for the change of angle of attack caused by w_dot on the Z force [dimensionless] (2 * dC_m/di * depsilon/dalpha)
            Cz_q - coefficient for the change in Z force due to pitching velocity [dimensionless] (2 * K * dC_m/di where K is approximately 1.1)
            Cw - coefficient to account for gravity [dimensionless] (-C_L)
            Theta - angle between the horizontal axis and the body axis measured in the vertical plane [radians]
            Cx_u - coefficient for the change in force in the X direction due to change in the forward velocity [dimensionless] (-2C_D)
            Cx_alpha - coefficient for the change in force in the X direction due to the change in angle of attack caused by w [dimensionless] (C_L-dC_L/dalpha)
        
        Outputs:
            output - a data dictionary with fields:
                short_w_n - natural frequency of the short period mode [radian/second]
                short_zeta - damping ratio of the short period mode [dimensionless]
                phugoid_w_n - natural frequency of the short period mode [radian/second]
                phugoid_zeta - damping ratio of the short period mode [dimensionless]
            
        Assumptions:
            X-Z axis is plane of symmetry
            Constant mass of aircraft
            Origin of axis system at c.g. of aircraft
            Aircraft is a rigid body
            Earth is inertial reference frame
            Perturbations from equilibrium are small
            Flow is Quasisteady
            Zero initial conditions
            Cm_a = CF_z_a = CF_x_a = 0
            Neglect Cx_alpha_dot, Cx_q and Cm_u
            
        Source:
            J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, p 26-41.
    """ 
    
    #process
    
    # constructing matrix of coefficients
    A = (- Cx_u, mass * velocity / S_gross_w / (0.5*density*velocity**2.))  # X force U term
    B = (-Cx_alpha) # X force alpha term
    C = (-Cw * np.cos(Theta)) # X force theta term
    D = (-Cz_u) # Z force U term
    E = (-Cz_alpha, (mass*velocity/S_gross_w/(0.5*density*velocity**2.)-mac*0.5/velocity*Cz_alpha_dot)) # Z force alpha term
    F = (- Cw * np.sin(Theta), (-mass*velocity/S_gross_w/(0.5*density*velocity**2.)-mac*0.5/velocity*Cz_q))# Z force theta term
    G = (0.) # M moment U term
    H = (-Cm_alpha, -mac*0.5/velocity*Cm_alpha_dot) # M moment alpha term
    I = (0., - mac*0.5/velocity*Cm_q, Iy/S_gross_w/(0.5*density*velocity**2)/mac) # M moment theta term
    
    # Taking the determinant of the matrix ([A, B, C],[D, E, F],[G, H, I])
    EI = P.polymul(E,I)
    FH = P.polymul(F,H)
    part1 = P.polymul(A,P.polysub(EI,FH))
    DI = P.polymul(D,I)
    FG = P.polymul(F,G)
    part2 = P.polymul(B,P.polysub(FG,DI))    
    DH = P.polymul(D,H)
    GE = P.polymul(G,E)
    part3 = P.polymul(C,P.polysub(DH,GE))
    total = P.polyadd(part1,P.polyadd(part2,part3))
    
    # Use Synthetic division to split polynomial into two quadratic factors
    poly = total / total[4]
    poly1 = poly * 1. 
    poly2 = poly * 1. 
    poly3 = poly * 1.
    poly4 = poly * 1.
    
    poly1[4] = poly[4] - poly[2]/poly[2]
    poly1[3] = poly[3] - poly[1]/poly[2]
    poly1[2] = poly[2] - poly[0]/poly[2]
    poly2[4] = 0
    poly2[3] = poly1[3] - poly[2]*poly1[3]/poly[2]
    poly2[2] = poly1[2] - poly[1]*poly1[3]/poly[2]
    poly2[1] = poly1[1] - poly[0]*poly1[3]/poly[2]
    
    poly3[4] = poly[4] - poly2[2]/poly2[2]
    poly3[3] = poly[3] - poly2[1]/poly2[2]
    poly3[2] = poly[2] - poly2[0]/poly2[2]
    poly4[3] = poly3[3] - poly2[2]*poly3[3]/poly2[2]
    poly4[2] = poly3[2] - poly2[1]*poly3[3]/poly2[2]
    poly4[1] = poly3[1] - poly2[0]*poly3[3]/poly2[2]
     
    # Generate natural frequency and damping for Short Period and Phugoid modes
    short_w_n = (poly4[2])**0.5
    short_zeta = poly3[3]*0.5/short_w_n
    phugoid_w_n = (poly2[0]/poly2[2])**0.5
    phugoid_zeta = poly2[1]/poly2[2]*0.5/phugoid_w_n
    
    output = Data()
    output.short_natural_frequency = short_w_n
    output.short_damping_ratio = short_zeta
    output.phugoid_natural_frequency = phugoid_w_n
    output.phugoid_damping_ratio = phugoid_zeta    
    
    return output
def lateral_directional(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r, I_x, Cl_p, J_xz, Cl_r, Cl_Beta, Cn_p, Cy_phi, Cy_psi, Cy_Beta, mass):
    """ output = SUAVE.Methods.Flight_Dynamics.Dynamic_Stablity.Full_Linearized_Equations.lateral_directional(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r, I_x, Cl_p, J_xz, Cl_r, Cl_Beta, Cn_p, Cy_phi, Cy_psi, Cy_Beta)
        Calculate the natural frequency and damping ratio for the full linearized dutch roll mode along with the time constants for the roll and spiral modes        
        Inputs:
            velocity - flight velocity at the condition being considered [meters/seconds]
            Cn_Beta - coefficient for change in yawing moment due to sideslip [dimensionless] (no simple relation)
            S_gross_w - area of the wing [meters**2]
            density - flight density at condition being considered [kg/meters**3]
            span - wing span of the aircraft [meters]
            I_z - moment of interia about the body z axis [kg * meters**2]
            Cn_r - coefficient for change in yawing moment due to yawing velocity [dimensionless] ( - C_D(wing)/4 - 2 * Sv/S * (l_v/b)**2 * (dC_L/dalpha)(vert) * eta(vert))
            I_x - moment of interia about the body x axis [kg * meters**2]
            Cl_p - change in rolling moment due to the rolling velocity [dimensionless] (no simple relation for calculation)
            J_xz - products of inertia in the x-z direction [kg * meters**2] (if X and Z lie in a plane of symmetry then equal to zero)
            Cl_r - coefficient for change in rolling moment due to yawing velocity [dimensionless] (Usually equals C_L(wing)/4)
            Cl_Beta - coefficient for change in rolling moment due to sideslip [dimensionless] 
            Cn_p - coefficient for the change in yawing moment due to rolling velocity [dimensionless] (-C_L(wing)/8*(1 - depsilon/dalpha)) (depsilon/dalpha = 2/pi/e/AspectRatio dC_L(wing)/dalpha)
            Cy_phi  - coefficient for change in sideforce due to aircraft roll [dimensionless] (Usually equals C_L)
            Cy_psi - coefficient to account for gravity [dimensionless] (C_L * tan(Theta))
            Cy_Beta - coefficient for change in Y force due to sideslip [dimensionless] (no simple relation)
            mass - mass of the aircraft [kilograms]
        
        Outputs:
            output - a data dictionary with fields:
                dutch_w_n - natural frequency of the dutch roll mode [radian/second]
                dutch_zeta - damping ratio of the dutch roll mode [dimensionless]
                roll_tau - approximation of the time constant of the roll mode of an aircraft [seconds] (positive values are bad)
                spiral_tau - time constant for the spiral mode [seconds] (positive values are bad)
            
        Assumptions:
            X-Z axis is plane of symmetry
            Constant mass of aircraft
            Origin of axis system at c.g. of aircraft
            Aircraft is a rigid body
            Earth is inertial reference frame
            Perturbations from equilibrium are small
            Flow is Quasisteady
            Zero initial conditions
            Neglect Cy_p and Cy_r
            
        Source:
            J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, p 118-124.
    """ 
    
    #process
    
    # constructing matrix of coefficients
    A = (0, -span * 0.5 / velocity * Cl_p, I_x/S_gross_w/(0.5*density*velocity**2)/span )  # L moment phi term
    B = (0, -span * 0.5 / velocity * Cl_r, -J_xz / S_gross_w / (0.5 * density * velocity ** 2.) / span) # L moment psi term
    C = (-Cl_Beta) # L moment Beta term
    D = (0, - span * 0.5 / velocity * Cn_p, -J_xz / S_gross_w / (0.5 * density * velocity ** 2.) / span ) # N moment phi term 
    E = (0, - span * 0.5 / velocity * Cn_r, I_z / S_gross_w / (0.5 * density * velocity ** 2.) / span ) # N moment psi term
    F = (-Cn_Beta) # N moment Beta term
    G = (-Cy_phi) # Y force phi term
    H = (-Cy_psi, mass * velocity / S_gross_w / (0.5 * density * velocity ** 2.))    
    I = (-Cy_Beta, mass * velocity / S_gross_w / (0.5 * density * velocity ** 2.))
    
    # Taking the determinant of the matrix ([A, B, C],[D, E, F],[G, H, I])
    EI = P.polymul(E,I)
    FH = P.polymul(F,H)
    part1 = P.polymul(A,P.polysub(EI,FH))
    DI = P.polymul(D,I)
    FG = P.polymul(F,G)
    part2 = P.polymul(B,P.polysub(FG,DI))    
    DH = P.polymul(D,H)
    GE = P.polymul(G,E)
    part3 = P.polymul(C,P.polysub(DH,GE))
    total = P.polyadd(part1,P.polyadd(part2,part3))
    poly = total / total[5]
    
    # Generate the time constant for the spiral and roll modes along with the damping and natural frequency for the dutch roll mode
    root = np.roots(poly)
    root = sorted(root,reverse=True)
    spiral_tau = 1 * root[0].real
    w_n = (root[1].imag**2 + root[1].real**2)**(-0.5)
    zeta = -2*root[1].real/w_n
    roll_tau = 1 * root [3].real
    
    output = Data()
    output.dutch_natural_frequency = w_n
    output.dutch_damping_ratio = zeta
    output.spiral_tau = spiral_tau
    output.roll_tau = roll_tau    
    
    return output
示例#17
0
print(np.dot(x, y))  #Dot Product
#_______________________________________________________________________________
#Find the roots of the given polynomials
print("Roots of the first polynomial:")
print(np.roots([1, 1.5, 2]))  #getting roots of polynomial
print("Roots of the second polynomial:")
print(np.roots([1, -5.09]))  #getting roots of polynomial
#_______________________________________________________________________________
# Add, subtract, multiply and divide polynomials
from numpy.polynomial import polynomial as P
x = (10, 20, 30)  #declaring polynomials
y = (30, 40, 50)
print("Add one polynomial to another:")
print(P.polyadd(x, y))  #Adding polynomial
print("Subtract one polynomial from another:")
print(P.polysub(x, y))  #Subtracting polynomial
print("Multiply one polynomial by another:")
print(P.polymul(x, y))  #Multiplying polynomial
print("Divide one polynomial by another:")
print(P.polydiv(x, y))  #Dividing polynomial
#_______________________________________________________________________________
#Compute sine, cosine and tangent array of angles given in degrees
print("sine: array of angles given in degrees")
print(np.sin(np.array(
    (0., 30., 45., 60., 90.)) * np.pi / 180.))  #Computing sin of angles
print("cosine: array of angles given in degrees")
print(np.cos(np.array(
    (0., 30., 45., 60., 90.)) * np.pi / 180.))  #Computing cos of angles
print("tangent: array of angles given in degrees")
print(np.tan(np.array(
    (0., 30., 45., 60., 90.)) * np.pi / 180.))  #Computing tan of angles
示例#18
0
文件: Main.py 项目: panaka13/cs440
def polynomialRichardson(f1, f2, degree):
    power = 2**(degree + 1)
    from numpy.polynomial import polynomial as P
    tmp = P.polysub(P.polymul(f2, [power]), f1)
    return P.polymul(tmp, [1 / (power - 1)])
示例#19
0
def inverse_rational_matrix(my_tf_object):
    """ Takes the inverse of a transfer function matrix and returns it.
    Parameters:
        numArray_pres: a 2D array of the coefficients of the polynomials in the numerator of each entry of the original matrix
        denArray: a 2D array of the coefficients of the polynomials in the denominator of each entry of the original matrix

    :return:
     out: a transfer function object that represents the inverted matrix
    """
    # We turn our transfer function into a polynomial coefficient type object for making the algebraic inversion
    numArray_reverse = my_tf_object.num
    denArray_reverse = my_tf_object.den
    # Now we take the coefficients of the polynomial and put them into 2 arrays
    # one for numerators and one for denominators
    numArray_list = list(numArray_reverse)
    denArray_list = list(denArray_reverse)
    n = np.shape(denArray_list)[0]
    for i in np.arange(n):
        for j in np.arange(n):
            numArray_list[i][j] = np.flipud(numArray_list[i][j])
            denArray_list[i][j] = np.flipud(denArray_list[i][j])
    numArray_pres = (numArray_list)
    denArray = (denArray_list)
    numArray_fut = deepcopy(numArray_pres)
    our_ks = np.arange(n - 1, -1, -1)
    # We now go through the process of computing the adjoint of the numerator
    for k in our_ks:
        # One iteration of the pivoting, after pivoting the future become the present and the present becomes the past
        # Now we update our past and present and future numerator arrays for the next pivot
        numArray_past = deepcopy(numArray_pres)
        numArray_pres = deepcopy(numArray_fut)
        for i in np.arange(n):
            for j in np.arange(n):
                # Below are the following cases for the numerator of the adjoint,
                # each is based off of the index of the location of the matrix entry:
                # Based off of the paper by T. Downs called: On the inversion of a matrix of rational functions (1971)
                # Case 1: i,j<k
                if i < k and j < k:
                    if k == n-1:
                        numArray_fut[i][j] = tuple(poly.polysub(poly.polymul(poly.polymul(numArray_pres[i][j], numArray_pres[k][k]), poly.polymul(denArray[i][k], denArray[k][j])),
                                                                poly.polymul(poly.polymul(numArray_pres[i][k], numArray_pres[k][j]), poly.polymul(denArray[i][j], denArray[k][k]))))
                    else:
                        numArray_fut[i][j] = tuple(poly.polydiv(poly.polysub(poly.polymul(poly.polymul(numArray_pres[i][j], numArray_pres[k][k]), poly.polymul(denArray[i][k], denArray[k][j])),
                                                                             poly.polymul(poly.polymul(numArray_pres[i][k], numArray_pres[k][j]), poly.polymul(denArray[i][j], denArray[k][k]))),
                                                                             numArray_past[k+1][k+1])[0])
                # Case 2: i>k>j
                elif i > k and k > j:
                    numArray_fut[i][j] = tuple(poly.polydiv(poly.polysub(poly.polymul(poly.polymul(numArray_pres[i][j], numArray_pres[k][k]), denArray[k][j]),
                                                     poly.polymul(poly.polymul(numArray_pres[i][k], numArray_pres[k][j]), denArray[k][k])),
                                                     poly.polymul(denArray[k][i], numArray_past[k+1][k+1]))[0])
                # Case 2.5: j>k>i
                elif j > k and k > i:
                    numArray_fut[i][j] = tuple(poly.polydiv(poly.polysub(poly.polymul(poly.polymul(numArray_pres[i][j], numArray_pres[k][k]), denArray[i][k]),
                                                     poly.polymul(poly.polymul(numArray_pres[i][k], numArray_pres[k][j]), denArray[k][k])),
                                                     poly.polymul(denArray[j][k], numArray_past[k+1][k+1]))[0])
                # Case 4 from the paper: i=j>k
                elif i == j and j > k:
                    numArray_fut[i][j] = tuple(poly.polydiv(poly.polysub(poly.polymul(numArray_pres[i][i], numArray_pres[k][k]),
                                                     poly.polymul(poly.polymul(numArray_pres[i][k], numArray_pres[k][i]), poly.polymul(denArray[k][k], denArray[i][i]))),
                                                     poly.polymul(poly.polymul(denArray[k][i], denArray[i][k]), numArray_past[k+1][k+1]))[0])
                # Case 3 from the paper: i,j>k
                elif i > k and j > k:
                    numArray_fut[i][j] = tuple(poly.polydiv(poly.polysub(poly.polymul(numArray_pres[i][j], numArray_pres[k][k]),
                                                     poly.polymul(poly.polymul(numArray_pres[i][k], numArray_pres[k][j]), denArray[k][k])),
                                                     poly.polymul(poly.polymul(denArray[k][i], denArray[j][k]), numArray_past[k+1][k+1]))[0])
                # Case 5: i=k!=j
                elif i == k and k != j:
                    numArray_fut[k][j] = tuple(poly.polymul((-1,), numArray_pres[k][j]))
                # Case 6: j=k!=i
                elif j == k and k != i:
                    numArray_fut[i][j] = tuple(numArray_pres[i][j])
                # Case 7: i=j=k
                elif i == j == k:
                    if k == n-1:
                        numArray_fut[k][k] = (1,)
                    else:
                        numArray_fut[k][k] = tuple(numArray_past[k+1][k+1])
    denArray_fut = deepcopy(denArray)
    # Below we do the denominator:
    for i in np.arange(n):
        for j in np.arange(n):
            # Each entry of the denominator is the product of all the original denominators except for the ith column
            #  and the jth row of the original denominator matrix
            # First we normalize the initial entry
            denArray_fut[i][j] = tuple(poly.polydiv(denArray_fut[i][j], denArray_fut[i][j])[0])
            for ii in np.arange(n):
                for jj in np.arange(n):
                    if j != ii and i != jj:
                        denArray_fut[i][j] = tuple(poly.polymul(denArray_fut[i][j], denArray[ii][jj]))
    # Now we collect our results and we return our final inverted matrix
    my_adjoint_num = deepcopy(numArray_fut)
    my_adjoint_den = deepcopy(denArray_fut)
    # We multiply the adjoint by the inverse of the determinant of the matrix, the inverse of the determinant is
    # decided to be the past numerator array (or that before preforming the final pivot)
    inverse_determinant_den = deepcopy(numArray_pres[0][0])
    inverse_determinant_num = (1)
    for i in np.arange(n):
        for j in np.arange(n):
            inverse_determinant_num = tuple(poly.polymul(denArray[i][j], inverse_determinant_num))
    newMatrix_num = []
    newMatrix_den = []
    for i in np.arange(n):
        newMatrix_num.append([])
        for j in np.arange(n):
            newMatrix_num[i].append(tuple(poly.polymul(my_adjoint_num[i][j], inverse_determinant_num)))
    # Now we do the denominators
    for i in np.arange(n):
        newMatrix_den.append([])
        for j in np.arange(n):
            x = np.shape(my_adjoint_den)
            newMatrix_den[i].append(tuple(poly.polymul(my_adjoint_den[i][j], inverse_determinant_den)))
    # Ok, we finally have our inverse!
    numerators = newMatrix_num
    denominators = newMatrix_den
    try: # A polynomial solver for smaller degree polynomials to do cancellations and reduce the polynomials
        for i in np.arange(n):
            for j in np.arange(n):
                numerators[i][j] = np.flipud(numerators[i][j])
                denominators[i][j] = np.flipud(denominators[i][j])
                k = 0
                for val in numerators[i][j]:
                    numerators[i][j][k] = round(val, 4)
                    k += 1
                num_roots = (np.roots(numerators[i][j]))
                den_roots = (np.roots(denominators[i][j]))
                for r in np.arange(len(num_roots)):
                    num_roots[r] = round(num_roots[r], 4)*10000.
                for dr in np.arange(len(den_roots)):
                    den_roots[dr] = round(den_roots[dr], 4)*10000.
                num_roots = Counter(num_roots)
                den_roots = Counter(den_roots)
                all_roots_num = num_roots - den_roots
                all_roots_den = den_roots - num_roots
                if np.any(numerators[i][j]) != 0:  # If zero then we want to keep them as they are.
                    numerators[i][j] = numerators[i][j][0]/denominators[i][j][0]
                for k in all_roots_num:
                    for number in np.arange(all_roots_num[k]):
                        numerators[i][j] = list(poly.polymul(numerators[i][j], (-k/10000., 1)))
                denominators[i][j] = 1
                for k in all_roots_den:
                    for number in np.arange(all_roots_den[k]):
                        denominators[i][j] = list(poly.polymul(denominators[i][j], (-k/10000., 1)))
        # Now we return the values in the form of transfer functions by casting them with control.tf
        for i in np.arange(n):
            for j in np.arange(n):
                if type(numerators[i][j]) == 'npumpy.ndarray' or type(numerators[i][j]) == list:
                    numerators[i][j] = np.flipud(numerators[i][j])
                else:
                    numerators[i][j] = np.array([float(np.real(numerators[i][j]))])
                if type(denominators[i][j]) != int:
                    denominators[i][j] = np.flipud(denominators[i][j])
                else:
                    denominators[i][j] = np.array([float(denominators[i][j])])
    except:
        b = "c"
    num_list = []
    den_list = []
    for i in np.arange(n):
        num_list.append(list((numerators[i])))
        den_list.append(list((denominators[i])))
    out = tf.tf(num_list, den_list)
    return out
示例#20
0
 def extrema(self, line, poly):
     """ Calculates upper extrema. """
     return polyroots(polysub(np.array([line.start.cost]), poly))
示例#21
0
文件: __init__.py 项目: 1950/sawbuck
def polysub(c1, c2):
    from numpy.polynomial.polynomial import polysub
    return polysub(c1, c2)
示例#22
0
		c1[i]=rand.randint(-5,5)
	for i in range(len(c2)):
		c2[i]=rand.randint(-5,5)

	# TESTING ADDITION FUNCTION
	a= P.polyadd(c1,c2).tolist()	
	b= q.addPoly(c1,c2)
	if(a!=b):
		print "Failed on Case:"
		print "a add b"
		print "a",a
		print "b",b
		break

        # TESTING SUBTRACTION FUNCTION
	a=P.polysub(c1,c2).tolist()
	b=q.subPoly(c1,c2)
	if(a!=b):
		print "Failed on Case:"
		print "a subtract b"
		print "a",a
		print "b",b
		break

	# TESTING MULTIPLICATION FUNCTION	
	a=P.polymul(c1,c2).tolist()
	b=q.multPoly(c1,c2)
	if(a!=b):
		print "Failed on Case:"
		print "a * b"
		print "a",a
示例#23
0
def lateral_directional(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r,
                        I_x, Cl_p, J_xz, Cl_r, Cl_Beta, Cn_p, Cy_phi, Cy_psi,
                        Cy_Beta, mass):
    """ output = SUAVE.Methods.Flight_Dynamics.Dynamic_Stablity.Full_Linearized_Equations.lateral_directional(velocity, Cn_Beta, S_gross_w, density, span, I_z, Cn_r, I_x, Cl_p, J_xz, Cl_r, Cl_Beta, Cn_p, Cy_phi, Cy_psi, Cy_Beta)
        Calculate the natural frequency and damping ratio for the full linearized dutch roll mode along with the time constants for the roll and spiral modes        
        Inputs:
            velocity - flight velocity at the condition being considered [meters/seconds]
            Cn_Beta - coefficient for change in yawing moment due to sideslip [dimensionless] (no simple relation)
            S_gross_w - area of the wing [meters**2]
            density - flight density at condition being considered [kg/meters**3]
            span - wing span of the aircraft [meters]
            I_z - moment of interia about the body z axis [kg * meters**2]
            Cn_r - coefficient for change in yawing moment due to yawing velocity [dimensionless] ( - C_D(wing)/4 - 2 * Sv/S * (l_v/b)**2 * (dC_L/dalpha)(vert) * eta(vert))
            I_x - moment of interia about the body x axis [kg * meters**2]
            Cl_p - change in rolling moment due to the rolling velocity [dimensionless] (no simple relation for calculation)
            J_xz - products of inertia in the x-z direction [kg * meters**2] (if X and Z lie in a plane of symmetry then equal to zero)
            Cl_r - coefficient for change in rolling moment due to yawing velocity [dimensionless] (Usually equals C_L(wing)/4)
            Cl_Beta - coefficient for change in rolling moment due to sideslip [dimensionless] 
            Cn_p - coefficient for the change in yawing moment due to rolling velocity [dimensionless] (-C_L(wing)/8*(1 - depsilon/dalpha)) (depsilon/dalpha = 2/pi/e/AspectRatio dC_L(wing)/dalpha)
            Cy_phi  - coefficient for change in sideforce due to aircraft roll [dimensionless] (Usually equals C_L)
            Cy_psi - coefficient to account for gravity [dimensionless] (C_L * tan(Theta))
            Cy_Beta - coefficient for change in Y force due to sideslip [dimensionless] (no simple relation)
            mass - mass of the aircraft [kilograms]
        
        Outputs:
            output - a data dictionary with fields:
                dutch_w_n - natural frequency of the dutch roll mode [radian/second]
                dutch_zeta - damping ratio of the dutch roll mode [dimensionless]
                roll_tau - approximation of the time constant of the roll mode of an aircraft [seconds] (positive values are bad)
                spiral_tau - time constant for the spiral mode [seconds] (positive values are bad)
            
        Assumptions:
            X-Z axis is plane of symmetry
            Constant mass of aircraft
            Origin of axis system at c.g. of aircraft
            Aircraft is a rigid body
            Earth is inertial reference frame
            Perturbations from equilibrium are small
            Flow is Quasisteady
            Zero initial conditions
            Neglect Cy_p and Cy_r
            
        Source:
            J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, p 118-124.
    """

    #process

    # constructing matrix of coefficients
    A = (0, -span * 0.5 / velocity * Cl_p,
         I_x / S_gross_w / (0.5 * density * velocity**2) / span
         )  # L moment phi term
    B = (0, -span * 0.5 / velocity * Cl_r,
         -J_xz / S_gross_w / (0.5 * density * velocity**2.) / span
         )  # L moment psi term
    C = (-Cl_Beta)  # L moment Beta term
    D = (0, -span * 0.5 / velocity * Cn_p,
         -J_xz / S_gross_w / (0.5 * density * velocity**2.) / span
         )  # N moment phi term
    E = (0, -span * 0.5 / velocity * Cn_r,
         I_z / S_gross_w / (0.5 * density * velocity**2.) / span
         )  # N moment psi term
    F = (-Cn_Beta)  # N moment Beta term
    G = (-Cy_phi)  # Y force phi term
    H = (-Cy_psi, mass * velocity / S_gross_w / (0.5 * density * velocity**2.))
    I = (-Cy_Beta,
         mass * velocity / S_gross_w / (0.5 * density * velocity**2.))

    # Taking the determinant of the matrix ([A, B, C],[D, E, F],[G, H, I])
    EI = P.polymul(E, I)
    FH = P.polymul(F, H)
    part1 = P.polymul(A, P.polysub(EI, FH))
    DI = P.polymul(D, I)
    FG = P.polymul(F, G)
    part2 = P.polymul(B, P.polysub(FG, DI))
    DH = P.polymul(D, H)
    GE = P.polymul(G, E)
    part3 = P.polymul(C, P.polysub(DH, GE))
    total = P.polyadd(part1, P.polyadd(part2, part3))
    poly = total / total[5]

    # Generate the time constant for the spiral and roll modes along with the damping and natural frequency for the dutch roll mode
    root = np.roots(poly)
    root = sorted(root, reverse=True)
    spiral_tau = 1 * root[0].real
    w_n = (root[1].imag**2 + root[1].real**2)**(-0.5)
    zeta = -2 * root[1].real / w_n
    roll_tau = 1 * root[3].real

    output = Data()
    output.dutch_natural_frequency = w_n
    output.dutch_damping_ratio = zeta
    output.spiral_tau = spiral_tau
    output.roll_tau = roll_tau

    return output
示例#24
0
def subpoly(f, g, m):
    return to_ring(poly.polysub(f, g), m)
示例#25
0
     pto = input("Digite el punto a evaluar: ")
     print "El resultado es: "+str(obj.evalPto(p1,pto))
 elif op == 2:
     print "Suma"
     gr1 = input("Grado del polinomio 1")
     p1 = obj.insertPol(gr1,p1)
     gr1 = input("Grado del polinomio 2")
     p2 = obj.insertPol(gr1,p2)
     print "La suma es:"+str(npy.polyadd(p1,p2))
 elif op == 3:
     print "Resta"
     gr1 = input("Grado del polinomio 1")
     p1 = obj.insertPol(gr1,p1)
     gr1 = input("Grado del polinomio 2")
     p2 = obj.insertPol(gr1,p2)
     print "La resta es:"+str(npy.polysub(p1,p2))
 elif op == 4:
     print "Multiplicacion"
     gr1 = input("Grado del polinomio 1")
     p1 = obj.insertPol(gr1,p1)
     gr1 = input("Grado del polinomio 2")
     p2 = obj.insertPol(gr1,p2)
     print "La multiplicacion es:"+str(npy.polymul(p1,p2))
 elif op == 5:
     print "Igualdad"
     gr1 = input("Grado del polinomio 1")
     p1 = obj.insertPol(gr1,p1)
     gr1 = input("Grado del polinomio 2")
     p2 = obj.insertPol(gr1,p2)
 elif op == 6:
     print "Polinomio Opuesto"
示例#26
0
 def extrema(self, line, poly):
     """ Calculates upper extrema. """
     return np.concatenate((polyroots(polysub(np.array([line.start.cost, np.inner(self.inexact["c_u"]*line.start.grad, line.dire)]), poly)),
                            polyroots(polysub(np.array([line.start.cost, np.inner(self.inexact["c_l"]*line.start.grad, line.dire)]), poly))))
示例#27
0
def longitudinal(velocity, density, S_gross_w, mac, Cm_q, Cz_alpha, mass,
                 Cm_alpha, Iy, Cm_alpha_dot, Cz_u, Cz_alpha_dot, Cz_q, Cw,
                 Theta, Cx_u, Cx_alpha):
    """ output = SUAVE.Methods.Flight_Dynamics.Dynamic_Stablity.Full_Linearized_Equations.longitudinal(velocity, density, S_gross_w, mac, Cm_q, Cz_alpha, mass, Cm_alpha, Iy, Cm_alpha_dot, Cz_u, Cz_alpha_dot, Cz_q, Cw, Theta, Cx_u, Cx_alpha)
        Calculate the natural frequency and damping ratio for the full linearized short period and phugoid modes

        Inputs:
            velocity - flight velocity at the condition being considered [meters/seconds]
            density - flight density at condition being considered [kg/meters**3]
            S_gross_w - area of the wing [meters**2]
            mac - mean aerodynamic chord of the wing [meters]
            Cm_q - coefficient for the change in pitching moment due to pitch rate [dimensionless] (2 * K * dC_m/di * lt/c where K is approximately 1.1)
            Cz_alpha - coefficient for the change in Z force due to the angle of attack [dimensionless] (-C_D - dC_L/dalpha)
            mass - mass of the aircraft [kilograms]
            Cm_alpha - coefficient for the change in pitching moment due to angle of attack [dimensionless] (dC_m/dC_L * dCL/dalpha)
            Iy - moment of interia about the body y axis [kg * meters**2]
            Cm_alpha_dot - coefficient for the change in pitching moment due to rate of change of angle of attack [dimensionless] (2 * dC_m/di * depsilon/dalpha * lt/mac)
            Cz_u - coefficient for the change in force in the Z direction due to change in forward velocity [dimensionless] (usually -2 C_L or -2C_L - U dC_L/du)
            Cz_alpha_dot - coefficient for the change of angle of attack caused by w_dot on the Z force [dimensionless] (2 * dC_m/di * depsilon/dalpha)
            Cz_q - coefficient for the change in Z force due to pitching velocity [dimensionless] (2 * K * dC_m/di where K is approximately 1.1)
            Cw - coefficient to account for gravity [dimensionless] (-C_L)
            Theta - angle between the horizontal axis and the body axis measured in the vertical plane [radians]
            Cx_u - coefficient for the change in force in the X direction due to change in the forward velocity [dimensionless] (-2C_D)
            Cx_alpha - coefficient for the change in force in the X direction due to the change in angle of attack caused by w [dimensionless] (C_L-dC_L/dalpha)

        Outputs:
            output - a data dictionary with fields:
                short_w_n - natural frequency of the short period mode [radian/second]
                short_zeta - damping ratio of the short period mode [dimensionless]
                phugoid_w_n - natural frequency of the short period mode [radian/second]
                phugoid_zeta - damping ratio of the short period mode [dimensionless]

        Assumptions:
            X-Z axis is plane of symmetry
            Constant mass of aircraft
            Origin of axis system at c.g. of aircraft
            Aircraft is a rigid body
            Earth is inertial reference frame
            Perturbations from equilibrium are small
            Flow is Quasisteady
            Zero initial conditions
            Cm_a = CF_z_a = CF_x_a = 0
            Neglect Cx_alpha_dot, Cx_q and Cm_u

        Source:
            J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, p 26-41.
    """

    velocity = np.mean(velocity)
    density = np.mean(density)
    S_gross_w = np.mean(S_gross_w)
    mac = np.mean(mac)
    Cm_q = np.mean(Cm_q)
    Cz_alpha = np.mean(Cz_alpha)
    mass = np.mean(mass)
    Cm_alpha = np.mean(Cm_alpha)
    Iy = np.mean(Iy)
    Cm_alpha_dot = np.mean(Cm_alpha_dot)
    Cz_u = np.mean(Cz_u)
    Cz_alpha_dot = np.mean(Cz_alpha_dot)
    Cz_q = np.mean(Cz_q)
    Cw = np.mean(Cw)
    Theta = np.mean(Theta)
    Cx_u = np.mean(Cx_u)
    Cx_alpha = np.mean(Cx_alpha)

    # constructing matrix of coefficients
    A = (-Cx_u, mass * velocity / S_gross_w / (0.5 * density * velocity**2.)
         )  # X force U term
    B = (-Cx_alpha)  # X force alpha term
    C = (-Cw * np.cos(Theta))  # X force theta term
    D = (-Cz_u)  # Z force U term
    E = (-Cz_alpha,
         (mass * velocity / S_gross_w / (0.5 * density * velocity**2.) -
          mac * 0.5 / velocity * Cz_alpha_dot))  # Z force alpha term
    F = (-Cw * np.sin(Theta),
         (-mass * velocity / S_gross_w / (0.5 * density * velocity**2.) -
          mac * 0.5 / velocity * Cz_q))  # Z force theta term
    G = 0.  # M moment U term
    H = (-Cm_alpha, -mac * 0.5 / velocity * Cm_alpha_dot
         )  # M moment alpha term
    I = (0., -mac * 0.5 / velocity * Cm_q,
         Iy / S_gross_w / (0.5 * density * velocity**2) / mac
         )  # M moment theta term

    # Taking the determinant of the matrix ([A, B, C],[D, E, F],[G, H, I])
    EI = P.polymul(E, I)
    FH = P.polymul(F, H)
    part1 = P.polymul(A, P.polysub(EI, FH))
    DI = P.polymul(D, I)
    FG = P.polymul(F, G)
    part2 = P.polymul(B, P.polysub(FG, DI))
    DH = P.polymul(D, H)
    GE = P.polymul(G, E)
    part3 = P.polymul(C, P.polysub(DH, GE))
    total = P.polyadd(part1, P.polyadd(part2, part3))

    # Use Synthetic division to split polynomial into two quadratic factors
    poly = total / total[4]
    poly1 = poly * 1.
    poly2 = poly * 1.
    poly3 = poly * 1.
    poly4 = poly * 1.

    poly1[4] = poly[4] - poly[2] / poly[2]
    poly1[3] = poly[3] - poly[1] / poly[2]
    poly1[2] = poly[2] - poly[0] / poly[2]
    poly2[4] = 0
    poly2[3] = poly1[3] - poly[2] * poly1[3] / poly[2]
    poly2[2] = poly1[2] - poly[1] * poly1[3] / poly[2]
    poly2[1] = poly1[1] - poly[0] * poly1[3] / poly[2]

    poly3[4] = poly[4] - poly2[2] / poly2[2]
    poly3[3] = poly[3] - poly2[1] / poly2[2]
    poly3[2] = poly[2] - poly2[0] / poly2[2]
    poly4[3] = poly3[3] - poly2[2] * poly3[3] / poly2[2]
    poly4[2] = poly3[2] - poly2[1] * poly3[3] / poly2[2]
    poly4[1] = poly3[1] - poly2[0] * poly3[3] / poly2[2]

    # Generate natural frequency and damping for Short Period and Phugoid modes
    short_w_n = (poly4[2])**0.5
    short_zeta = poly3[3] * 0.5 / short_w_n
    phugoid_w_n = (poly2[0] / poly2[2])**0.5
    phugoid_zeta = poly2[1] / poly2[2] * 0.5 / phugoid_w_n

    output = Data()
    output.short_natural_frequency = short_w_n
    output.short_damping_ratio = short_zeta
    output.phugoid_natural_frequency = phugoid_w_n
    output.phugoid_damping_ratio = phugoid_zeta

    return output
示例#28
0
 def __sub__(self, other):
     if isinstance(other, MyPolynomial):
         return MyPolynomial(
             polynomial.polysub(self.polynomial, other.polynomial)[0])
     else:
         return MyPolynomial(self.polynomial - other)