示例#1
0
 def add_noise_helper(self, node, noise_std):
     if (not (node.depth == 0 or node.depth == 1)):
         node.noised_position = [
             norm(node.position[0], noise_std),
             norm(node.position[1], noise_std),
             norm(node.position[2], noise_std)
         ]
     else:
         node.noised_position = node.position[:3]
     for child in node.children:
         self.add_noise_helper(child, noise_std)
示例#2
0
文件: mothsmell.py 项目: cdw/fumebox
 def source_wander(self, scale = BODY_LEN):
     """Where is that smell coming from?"""
     if SOURCE_WANDERS is True:
         self.source = [s+norm(scale=scale) for s in self.source]
         if any((self.source[0]<0, self.source[0]>BOX_SIZE[0],
                 self.source[0]<0, self.source[0]>BOX_SIZE[0])):
             self.source_wander(scale)
示例#3
0
    def test_multiple_update(self):
        measurement_count = 60
        initial_truth = np.array([24, 45])
        error_variance = 5.0
        error_covariance = np.multiply(error_variance, np.identity(2))
        measurements = norm(mean=initial_truth,
                            cov=error_covariance,
                            size=measurement_count)

        # pass in first point: without previous state continuity
        priorEvent = None
        events = []
        results = np.empty_like(measurements)
        resultIndex = 0
        for location in measurements:
            currentEvent = createEvent(location, prior=priorEvent)

            result = lambda_handler(currentEvent, None)

            results[resultIndex] = [result['latitude'], result['longitude']]
            resultIndex += 1

            # if 'prior' in currentEvent:
            # print("....[{:>8.6}, {:>8.6}] => [{:>8.6}, {:>8.6}]( {:>6.6})".format(
            #     location[0], location[1],
            #     currentEvent['prior']['latitude'], currentEvent['prior']['longitude'], currentEvent['prior']['variance']))
            # print("........................... [{:>8.6}, {:>8.6}]( {:>6.6})".format(
            #     result['latitude'], result['longitude'], result['variance']))

            priorEvent = result

        # print( results )
        self.assertAlmostEqual(result['latitude'], initial_truth[0], delta=5)
        self.assertAlmostEqual(result['longitude'], initial_truth[1], delta=5)
        self.assertAlmostEqual(result['variance'], 1, delta=2)
示例#4
0
 def add_noise_vary_helper(self, node, noise_std):
     if (not (node.depth == 0 or node.depth == 1)):
         if ("Hand" in node.name or "Foot" in node.name):
             node.noised_position = [
                 norm(node.position[0], noise_std),
                 norm(node.position[1], noise_std),
                 norm(node.position[2], noise_std)
             ]
         else:
             node.noised_position = [
                 norm(node.position[0], 0.1),
                 norm(node.position[1], 0.1),
                 norm(node.position[2], 0.1)
             ]
     else:
         node.noised_position = node.position[:3]
     for child in node.children:
         self.add_noise_vary_helper(child, noise_std)
示例#5
0
from numpy.random import normal as norm
import matplotlib.pyplot as plt

from general_class_balancer import *

# Sample script showing how this balances on simulated, random data.

show_balanced = True
N = 12000  # Number of datapoints
confounds = np.random.rand(2, N)

# Unfortunately, numpy arrays don't support mixed types, so in order to mix
# floats (i.e., continuous covariates) and strings (i.e., discrete, or labeled,
# covariates), it is necessary to cast them all as objects. Slows things down,
# but if covariates are all of one type, they can be cast as one or the other.
c1 = np.array([norm(1, 2, N / 3),
               norm(0.5, 2, N / 3),
               norm(2, 1, N / 3)],
              dtype=object)
c2 = np.array([norm(3, 2, N / 3),
               norm(0.5, 2, N / 3),
               norm(3.1, 0.25, N / 3)],
              dtype=object)
c3 = np.array([norm(2, 1, N / 3),
               norm(0.5, 2, N / 3),
               norm(2.9, 1, N / 3)],
              dtype=object)
confounds = np.concatenate((c1, c2, c3), axis=1)
c4 = np.array([[np.random.choice(["a", "b", "c"]) for x in range(N)]],
              dtype=object)
confounds = np.concatenate((confounds, c4), axis=0)
示例#6
0
for n in range(numtrials):
    r = N / (4 * numharm) + uniform(0.0, 1.0,
                                    1)[0]  # average freq over "observation"
    z = uniform(-100, 100, 1)[0]  # average fourier f-dot
    w = uniform(-600, 600, 1)[0]  # fourier freq double deriv
    # w = 0.0 # fourier freq double deriv
    data = np.zeros_like(us)
    for ii in range(numharm):
        rh = r * (ii + 1)
        zh = z * (ii + 1)
        wh = w * (ii + 1)
        r0 = rh - 0.5 * zh + wh / 12.0  # Make symmetric for all z and w
        z0 = zh - 0.5 * wh
        phss = 2.0 * np.pi * (us * (us * (us * wh / 6.0 + z0 / 2.0) + r0))
        data += np.cos(phss)
    data += noiseamp * norm(N)
    ft = presto.rfft(data)

    offset = uniform(-1.0, 1.0, 3) * np.array([0.5, 2.0, 20.0]) / numharm

    a = time.clock()
    if (numharm > 1):
        [maxpow, rmax, zmax, rds] = presto.maximize_rz_harmonics(ft,
                                                                 r + offset[0],
                                                                 z + offset[1],
                                                                 numharm,
                                                                 norm=1.0)
    else:
        [maxpow, rmax, zmax, rd] = presto.maximize_rz(ft,
                                                      r + offset[0],
                                                      z + offset[1],
示例#7
0
import ppgplot
from Pgplot import pgpalette
from numpy.random import standard_normal as norm
import time

N = 2**14
r = N/4.0 # average freq over "observation"
#r = N/4.0 + 0.5 # average freq over "observation"
rint = num.floor(r)
dr = 1.0/32.0
dz = 0.18
np = 512 # number of pixels across for f-fdot image
z = 10.0 # average fourier f-dot
w = -40.0 # fourier freq double deriv
noise = 0.0
noise = 1.0*norm(N)

us = num.arange(N, dtype=num.float64) / N # normalized time coordinate
r0 = r - 0.5 * z + w / 12.0 # Make symmetric for all z and w
z0 = z - 0.5 * w
phss = 2.0 * num.pi * (us * (us * (us * w/6.0 + z0/2.0) + r0))
ft = presto.rfft(num.cos(phss)+noise)
ffdot = presto.ffdot_plane(ft, rint-np/2*dr, dr, np, 0.0-np/2*dz, dz, np)
pffdot = presto.spectralpower(ffdot.flat)
theo_max_pow = N**2.0/4.0
frp = max(pffdot) / theo_max_pow # Fraction of recovered power
print "Fraction of recovered signal power = %f" % frp
a = time.clock()
[maxpow, rmax, zmax, rd] = presto.maximize_rz(ft, r+norm(1)[0]/5.0,
                                              z+norm(1)[0], norm=1.0)
print "Time for rz:", time.clock()-a
示例#8
0
for n in range(numtrials): 
    r = N/(4*numharm) + uniform(0.0, 1.0, 1)[0] # average freq over "observation"
    z = uniform(-100, 100, 1)[0] # average fourier f-dot
    w = uniform(-600, 600, 1)[0] # fourier freq double deriv
    w = 0.0 # fourier freq double deriv
    data = np.zeros_like(us)
    for ii in range(numharm):
        rh = r * (ii + 1)
        zh = z * (ii + 1)
        wh = w * (ii + 1)
        r0 = rh - 0.5 * zh + wh / 12.0 # Make symmetric for all z and w
        z0 = zh - 0.5 * wh
        phss = 2.0 * np.pi * (us * (us * (us * wh/6.0 + z0/2.0) + r0))
        data += np.cos(phss)
    data += noiseamp * norm(N)
    ft = presto.rfft(data)

    offset = uniform(-1.0, 1.0, 3) * np.array([0.5, 2.0, 20.0]) / (0.5 * numharm)

    a = time.clock()
    if (numharm > 1):
        [maxpow, rmax, zmax, rds] = presto.maximize_rz_harmonics(ft, r+offset[0],
                                                                 z+offset[1], numharm,
                                                                 norm=1.0)
    else:
        [maxpow, rmax, zmax, rd] = presto.maximize_rz(ft, r+offset[0],
                                                      z+offset[1],
                                                      norm=1.0)
    rztime += time.clock() - a
    rzerrs[n] = (maxpow/numharm - theo_max_pow) / theo_max_pow, rmax - r, zmax - z
 def gaussianSample(lower, upper):
     dis = upper - lower
     ans = int(norm((lower + upper) / 2, dis / 6))
     if ans >= upper: ans = upper - 1
     if ans < lower: ans = lower
     return ans