示例#1
0
    def propose(self):

        if self._dist == 'RoundedNormal':
            self.parameter.value = int(
                round(rnormal(self.parameter.value, self.proposal_sig)))
        # Default to normal random-walk proposal
        else:
            self.parameter.value = rnormal(self.parameter.value,
                                           self.proposal_sig)
示例#2
0
    def propose(self):
        # Propose new values using normal distribution

        if self.proposal_distribution == "Normal":

            # New normal deviate, centred on current value
            new_val = rnormal(self.stochastic.value, self.adaptive_scale_factor * self.proposal_sd)

            # Round before setting proposed value
            self.stochastic.value = round_array(new_val)

        elif self.proposal_distribution == "Poisson":

            k = shape(self.stochastic.value)
            # Add or subtract (equal probability) Poisson sample
            new_val = self.stochastic.value + rpoisson(self.adaptive_scale_factor * self.proposal_sd) * (-ones(k))**(random(k)>0.5)

            if self._positive:
                # Enforce positive values
                self.stochastic.value = abs(new_val)
            else:
                self.stochastic.value = new_val

        elif self.proposal_distribution == "Prior":
            self.stochastic.random()
示例#3
0
    def propose(self):
        # Propose new values using normal distribution

        if self.proposal_distribution == "Normal":

            # New normal deviate, centred on current value
            new_val = rnormal(self.stochastic.value, self.adaptive_scale_factor * self.proposal_sd)

            # Round before setting proposed value
            self.stochastic.value = round_array(new_val)

        elif self.proposal_distribution == "Poisson":

            k = shape(self.stochastic.value)
            # Add or subtract (equal probability) Poisson sample
            new_val = self.stochastic.value + rpoisson(self.adaptive_scale_factor * self.proposal_sd) * (-ones(k))**(random(k)>0.5)

            if self._positive:
                # Enforce positive values
                self.stochastic.value = abs(new_val)
            else:
                self.stochastic.value = new_val

        elif self.proposal_distribution == "Prior":
            self.stochastic.random()
示例#4
0
文件: TWalk.py 项目: along1x/pymc
    def hop(self):
        """Hop proposal kernel"""
        
        if self.verbose>1:
            print '\t' + self._id + ' Running Hop proposal kernel'
        
        # Mask for values to move
        phi = self.phi
        
        if self._prime:
            xp, x = self.values
        else:
            x, xp = self.values
    
        if self.verbose>1:
            print '\t' + 'Current value of x = ' + str(x)
        
        sigma = max(phi*abs(xp - x))/3.0

        x = (xp + sigma*rnormal())*phi + x*(phi==False)
        
        if self.verbose>1:
            print '\t' + 'Proposed value = ' + str(x)
        
        self.hastings_factor = self._g(x, xp, sigma) - self._g(self.stochastic.value, xp, sigma)
        
        self.stochastic.value = x
示例#5
0
文件: TWalk.py 项目: along1x/pymc
    def blow(self):
        """Blow proposal kernel"""
        
        if self.verbose>1:
            print '\t' + self._id + ' Running Blow proposal kernel'
        
        # Mask for values to move
        phi = self.phi
        
        if self._prime:
            xp, x = self.values
        else:
            x, xp = self.values
            
        if self.verbose>1:
            print '\t' + 'Current value ' + str(x)
        
        sigma = max(phi*abs(xp - x))

        x = x + phi*sigma*rnormal()
        
        if self.verbose>1:
            print '\t' + 'Proposed value = ' + str(x)
        
        self.hastings_factor = self._g(x, xp, sigma) - self._g(self.stochastic.value, xp, sigma)

        self.stochastic.value = x
示例#6
0
 def propose(self):
     """
     This method is called by step() to generate proposed values
     if self.proposal_distribution is "Normal" (i.e. no proposal specified).
     """
     if self.proposal_distribution == "Normal":
         self.stochastic.value = rnormal(self.stochastic.value, self.adaptive_scale_factor * self.proposal_sd)
     elif self.proposal_distribution == "Prior":
         self.stochastic.random()
示例#7
0
 def propose(self):
     """
     This method is called by step() to generate proposed values
     if self.proposal_distribution is "Normal" (i.e. no proposal specified).
     """
     if self.proposal_distribution == "Normal":
         self.stochastic.value = rnormal(self.stochastic.value, self.adaptive_scale_factor * self.proposal_sd)
     elif self.proposal_distribution == "Prior":
         self.stochastic.random()
示例#8
0
 def random(self, size=None):
     mu = self.mu
     lam = self.lam
     alpha = self.alpha
     v = rnormal(loc=0., scale=1., size=size)**2
     x = mu + (mu**2) * v / (2. * lam) - mu / (
         2. * lam) * sqrt(4. * mu * lam * v + (mu * v)**2)
     z = runiform(low=0., high=1., size=size)
     # i = z > mu / (mu + x)
     # x[i] = (mu**2) / x[i]
     i = floor(z - mu / (mu + x)) * 2 + 1
     x = (x**-i) * (mu**(i + 1))
     return x + alpha
示例#9
0
    def propose(self):
        """
        Proposals for positive definite matrix using random walk deviations on the Cholesky
        factor of the current value.
        """

        # Locally store size of matrix
        dims = self.stochastic.value.shape

        # Add normal deviate to value and symmetrize
        dev =  rnormal(0, self.adaptive_scale_factor * self.proposal_sd, size=dims)
        symmetrize(dev)

        # Replace
        self.stochastic.value = dev + self.stochastic.value
示例#10
0
    def propose(self):
        """
        Proposals for positive definite matrix using random walk deviations on the Cholesky
        factor of the current value.
        """

        # Locally store size of matrix
        dims = self.stochastic.value.shape

        # Add normal deviate to value and symmetrize
        dev =  rnormal(0, self.adaptive_scale_factor * self.proposal_sd, size=dims)
        symmetrize(dev)

        # Replace
        self.stochastic.value = dev + self.stochastic.value
示例#11
0
 def random(self, size=None):
     u = runiform(low=0., high=1., size=size)
     n = rnormal(self.mu, self.sigma, size=size)
     return n - self.nu * log(u)
def cross_render_sample_jitter(
        target_sample,
        source_sample,
        grain_duration=0.01,
        grain_dur_jitter=0.0,
        grain_interval_jitter=0.0,
        grain_jitter=0.0,  # proportional offset grain centers from each other
        density=4.0,
        verbose=0,
        code_size=4,
        hop_length=1024,
        frame_length=4096,
        delay_step_size=8,
        n_delays=128,
        source_anchor='left',  # or 'center', not actually implemented
        dest_anchor='center',  # or 'left'
        window='hann',
        n_workers=1,  # parallelism
        chunk_size=None,  # paralleism sync
        seamless=False,
        seed=None,
        random_flip=True,
        **kwargs):
    """
    random everything; but all grains from a single fit share the same
    target location.
    When anchor is 'center', grain locations are centres.
    """
    rseed(seed)
    if chunk_size is None:
        chunk_size = n_workers * 4
    output_sample = sample.zero_sample(duration=target_sample.duration(),
                                       sr=target_sample.sr,
                                       stem=source_sample.stem,
                                       parent_path=target_sample.parent_path)
    output_sample.append_stem('_x_')
    output_sample.append_stem(target_sample.stem)
    kwarg_fn = timed_stream.DictStream(kwargs)
    inter_onset_period = grain_duration / density
    dest_high = target_sample.duration()
    approx_last_step = dest_high / inter_onset_period
    if verbose >= 10:
        print("gp", inter_onset_period, density, grain_duration, code_size)
        print('dest_high', dest_high)
    if verbose >= 2:
        print('approx_last_step', approx_last_step)
    param_list = [
        (step, target_t, kwarg_fn(target_t)) for step, target_t in enumerate(
            pattern_iter.gamma_renewal_proc_scale(interval=inter_onset_period,
                                                  var=inter_onset_period *
                                                  grain_interval_jitter**2,
                                                  high=dest_high,
                                                  verbose=verbose))
    ]
    # I chunk this for intermediate results:
    # https://stackoverflow.com/a/43085080
    with Parallel(n_jobs=n_workers, verbose=verbose * 3) as pool:
        step = 0
        target_t_prev = 0.0
        try:
            for chunk in chunker(iter(param_list), chunk_size):
                for local_step, match in enumerate(
                        pool([
                            delayed(match_from_sample)(
                                target_sample=target_sample,
                                source_sample=source_sample,
                                target_t=target_t,
                                verbose=verbose,
                                hop_length=hop_length,
                                frame_length=frame_length,
                                delay_step_size=delay_step_size,
                                n_delays=n_delays,
                                anchor=source_anchor,
                                window=window,
                                code_size=code_size,
                                **kw) for step, target_t, kw in chunk
                        ])):

                    grains = match.grains()
                    ac_gains = match.gains()
                    rates = match.rates()
                    # if verbose >= 2:
                    #     elapsed = time() - start_time()
                    #     print(
                    #         "step", step+1,
                    #         "/", approx_last_step, ",",
                    #         elapsed, "/",
                    #         elapsed * (step+1)/approx_last_step)
                    target_t = match.target_t
                    target_t_inc = target_t - target_t_prev
                    target_t_prev = target_t
                    if verbose >= 3:
                        print(
                            "step", step, local_step,
                            't {:.5f}+{:.5f}'.format(target_t, target_t_inc),
                            'loss {:.5f}*{:.5f}'.format(
                                match.loss, match.scale))
                    if verbose >= 16:
                        print("match ", match)
                    for grain, ac_gain, rate in zip(grains, ac_gains, rates):
                        if ac_gain == 0.0:
                            continue
                        gain = sqrt(abs(ac_gain * rate))
                        if random_flip:
                            gain = gain * (2 * randint(2) - 1)
                        dest_t = match.target_t + np.asscalar(
                            rnormal(loc=0.0, scale=grain_jitter, size=1), )
                        if seamless:
                            base_duration = target_t_inc
                        else:
                            base_duration = inter_onset_period
                        this_grain_duration = min(
                            gamma_v(base_duration * density, grain_dur_jitter *
                                    base_duration * density), 5.0)
                        if verbose >= 6:
                            print(
                                "grain", 'dest {:.5f}'.format(dest_t),
                                'duration {:.5f}*{:.5f}'.format(
                                    this_grain_duration,
                                    this_grain_duration / target_t_inc))
                        if verbose >= 19:
                            print("is", grain, gain, rate)
                        sample.overdub_t(
                            dest_sample=output_sample,
                            source_sample=grain.sample,
                            dest_t=dest_t,
                            source_t=grain.t,
                            duration=this_grain_duration,
                            rate=rate,
                            mul=gain,
                            window=window,
                        )
                    step += 1
        except StopIteration as e:
            print('some iterator broke {}'.format(e))
            traceback.print_tb(e.__traceback__)
        except KeyboardInterrupt:
            print('stopping early')

    return output_sample
def cross_render_sample_adaptive(
        target_sample,
        source_sample,
        density=2.0,
        verbose=0,
        code_size=4,
        hop_length=1024,
        frame_length=4096,
        delay_step_size=8,
        grain_jitter=0.0,  # proportional offset grain centers from each other
        n_delays=128,
        source_anchor='center',  # or 'left', maybe not actually implemented?
        dest_anchor='center',  # or 'left'
        analysis_window='cosine',
        synthesis_window='hann',
        seed=None,
        random_flip=True,
        match_rtol=0.01,  # search early stopping parameter; not implemented
        progress=False,
        **kwargs):
    """
    Fit one new match at a time.
    """
    rseed(seed)
    sr = target_sample.sr
    output_sample = sample.zero_sample(duration=target_sample.duration(),
                                       sr=sr,
                                       stem=source_sample.stem,
                                       parent_path=target_sample.parent_path)
    output_sample.append_stem('_x_')
    output_sample.append_stem(target_sample.stem)
    kwarg_fn = timed_stream.DictStream(kwargs)
    grain_duration = frame_length / sr
    inter_onset_period = grain_duration / density
    dest_high = target_sample.duration()
    approx_last_step = dest_high / inter_onset_period
    if verbose >= 10:
        print("gp", inter_onset_period, density, grain_duration, code_size)
        print('dest_high', dest_high)
    if verbose >= 2:
        print('approx_last_step', approx_last_step)

    step = 0
    target_t_prev = 0.0
    target_t = 0.0
    target_i_prev = 0
    target_i = 0
    early_stop = False

    while target_i < output_sample.end:
        try:
            target_i += hop_length
            target_t = target_i / sr
            kw = kwarg_fn(target_t)
            match = match_from_sample(target_sample=target_sample,
                                      source_sample=source_sample,
                                      target_t=target_t,
                                      hop_length=hop_length,
                                      frame_length=frame_length,
                                      delay_step_size=delay_step_size,
                                      n_delays=n_delays,
                                      anchor=source_anchor,
                                      window=analysis_window,
                                      code_size=code_size,
                                      match_rtol=match_rtol,
                                      verbose=verbose,
                                      **kw)
            grains = match.grains()
            ac_gains = match.gains()
            rates = match.rates()
            # if verbose >= 2:
            #     elapsed = time() - start_time()
            #     print(
            #         "step", step+1,
            #         "/", approx_last_step, ",",
            #         elapsed, "/",
            #         elapsed * (step+1)/approx_last_step)
            target_t_inc = target_t - target_t_prev
            target_t_prev = target_t
            target_i_prev = target_i
            if verbose >= 3:
                print("step", step,
                      't {:.5f}+{:.5f}'.format(target_t, target_t_inc),
                      'loss {:.5f}*{:.5f}'.format(match.loss, match.scale))
            if verbose >= 16:
                print("match ", match)
            for g_i, grain, ac_gain, rate in zip(range(len(grains)), grains,
                                                 ac_gains, rates):
                if ac_gain == 0.0:
                    continue
                gain = sqrt(abs(ac_gain * rate))
                if random_flip:
                    gain = gain * (2 * randint(2) - 1)
                dest_t = target_t + np.asscalar(
                    rnormal(
                        loc=0.0, scale=grain_duration * grain_jitter, size=1))
                this_grain_duration = target_t_inc * density
                if verbose >= 8:
                    print(
                        "subgrain", g_i, 'dest {:.5f}'.format(dest_t),
                        'gain {:.5f}'.format(gain), 'rate {:.5f}'.format(rate),
                        'duration {:.5f}*{:.5f}'.format(
                            this_grain_duration,
                            this_grain_duration / target_t_inc))
                if verbose >= 19:
                    print("is", grain, gain, rate)
                landscape = np.copy(
                    output_sample.get_audio_data_t(
                        dest_t, duration=this_grain_duration, anchor="center"))
                sample.overdub_t(
                    dest_sample=output_sample,
                    source_sample=grain.sample,
                    dest_t=dest_t,
                    source_t=grain.t,
                    duration=this_grain_duration,
                    rate=rate,
                    mul=gain,
                    window=synthesis_window,
                    source_anchor=source_anchor,
                    dest_anchor=dest_anchor,
                    verbose=verbose,
                )
                if verbose >= 6:
                    y_so_far = output_sample.get_audio_data_t(
                        0, target_t + this_grain_duration)
                    print(
                        "glitch",
                        np.percentile(np.abs(np.gradient(y_so_far)),
                                      [50, 95, 99, 99.5]))
            step += 1
            if progress:
                print(step, '/', approx_last_step)
        except StopIteration as e:
            print('some iterator broke {}'.format(e))
            traceback.print_tb(e.__traceback__)
        except KeyboardInterrupt:
            print('stopping early at {} -- {}'.format(step, target_t))
            early_stop = True
            break

    return output_sample
示例#14
0
from numpy.random import normal as rnormal
from numpy import array, arange, sin, cos, pi, identity, matmul, zeros, cov
from numpy.linalg import inv
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

del_t = 0.1

t = arange(0, 1000, del_t)

x = .002*t + rnormal(0,.5,10000)
y = .0000003*(t-500)**3 + rnormal(0,.5,10000)
z = 4*sin(pi*t/1000) + rnormal(0,.5, 10000)

xt = .002*t
yt = .0000003*(t-500)**3
zt = 4*sin(pi*t/1000) 

v_x = array([(x[i] - x[i-1])/del_t for i in xrange(1,len(x))]+[(x[-1]-x[-2])/del_t])
v_y = array([(y[i] - y[i-1])/del_t for i in xrange(1,len(y))]+[(y[-1]-y[-2])/del_t])
v_z = array([(z[i] - z[i-1])/del_t for i in xrange(1,len(z))]+[(z[-1]-z[-2])/del_t])

X = array([x,v_x])
Y = array([y,v_y])
Z = array([z,v_z])

F = array([[1,del_t],[0,1]])
G = array([[del_t**2/2], [del_t]])
Q = matmul(G, G.transpose())*.5**2
Px = identity(2)*5