def water_self_diffusion_coefficient(T=None,
                                     units=None,
                                     warn=True,
                                     err_mult=None):
    """
    Temperature-dependent self-diffusion coefficient of water.

    Parameters
    ----------
    T : float
        Temperature (default: in Kelvin)
    units : object (optional)
        object with attributes: Kelvin, meter, kilogram
    warn : bool (default: True)
        Emit UserWarning when outside temperature range.
    err_mult : length 2 array_like (default: None)
        Perturb paramaters D0 and TS with err_mult[0]*dD0 and
        err_mult[1]*dTS respectively, where dD0 and dTS are the
        reported uncertainties in the fitted paramters. Useful
        for estimating error in diffusion coefficient.

    References
    ----------
    Temperature-dependent self-diffusion coefficients of water and six selected
        molecular liquids for calibration in accurate 1H NMR PFG measurements
        Manfred Holz, Stefan R. Heila, Antonio Saccob;
        Phys. Chem. Chem. Phys., 2000,2, 4740-4742
        http://pubs.rsc.org/en/Content/ArticleLanding/2000/CP/b005319h
        DOI: 10.1039/B005319H
    """
    if units is None:
        K = 1
        m = 1
        s = 1
    else:
        K = units.Kelvin
        m = units.meter
        s = units.second
    if T is None:
        T = 298.15 * K
    _D0 = D0 * m**2 * s**-1
    _TS = TS * K
    if err_mult is not None:
        _dD0 = dD0 * m**2 * s**-1
        _dTS = dTS * K
        _D0 += err_mult[0] * _dD0
        _TS += err_mult[1] * _dTS
    if warn and (_any(T < low_t_bound * K) or _any(T > high_t_bound * K)):
        warnings.warn("Temperature is outside range (0-100 degC)")
    return _D0 * ((T / _TS) - 1)**gamma
def water_self_diffusion_coefficient(T=None, units=None, warn=True,
                                     err_mult=None):
    """
    Temperature-dependent self-diffusion coefficient of water.

    Parameters
    ----------
    T: float
        Temperature (default: in Kelvin)
    units: object (optional)
        object with attributes: Kelvin, meter, kilogram
    warn: bool (default: True)
        Emit UserWarning when outside temperature range.
    err_mult: length 2 array_like (default: None)
        Perturb paramaters D0 and TS with err_mult[0]*dD0 and
        err_mult[1]*dTS respectively, where dD0 and dTS are the
        reported uncertainties in the fitted paramters. Useful
        for estimating error in diffusion coefficient.

    References
    ----------
    Temperature-dependent self-diffusion coefficients of water and six selected
        molecular liquids for calibration in accurate 1H NMR PFG measurements
        Manfred Holz, Stefan R. Heila, Antonio Saccob;
        Phys. Chem. Chem. Phys., 2000,2, 4740-4742
        http://pubs.rsc.org/en/Content/ArticleLanding/2000/CP/b005319h
        DOI: 10.1039/B005319H
    """
    if units is None:
        K = 1
        m = 1
        s = 1
    else:
        K = units.Kelvin
        m = units.meter
        s = units.second
    if T is None:
        T = 298.15*K
    _D0 = D0 * m**2 * s**-1
    _TS = TS * K
    if err_mult is not None:
        _dD0 = dD0 * m**2 * s**-1
        _dTS = dTS * K
        _D0 += err_mult[0]*_dD0
        _TS += err_mult[1]*_dTS
    if warn and (_any(T < low_t_bound*K) or _any(T > high_t_bound*K)):
        warnings.warn("Temperature is outside range (0-100 degC)")
    return _D0*((T/_TS) - 1)**gamma
def water_density(T=None,
                  T0=None,
                  units=None,
                  a=None,
                  just_return_a=False,
                  warn=True):
    """
    Density of water (kg/m3) as function of temperature (K)
    according to VSMOW model between 0 and 40 degree Celsius.
    Fitted using Thiesen's equation.

    Parameters
    ----------
    T : float
        Temperature (in Kelvin) (default: 298.15).
    T0 : float
        Value of T for 0 degree Celsius (default: 273.15).
    units : object (optional)
        Object with attributes: Kelvin, meter, kilogram.
    a : array_like (optional)
        5 parameters to the equation.
    just_return_a : bool (optional, default: False)
        Do not compute rho, just return the parameters ``a``.
    warn : bool (default: True)
        Emit UserWarning when outside temperature range.

    Returns
    -------
    Density of water (float of kg/m3 if T is float and units is None)

    Examples
    --------
    >>> print('%.2f' % water_density(277.13))
    999.97

    References
    ----------
    TANAKA M., GIRARD G., DAVIS R., PEUTO A. and BIGNELL N.,
        "Recommanded table for the density of water between 0 °C and 40 °C
        based on recent experimental reports",
        Metrologia, 2001, 38, 301-309.
        http://iopscience.iop.org/article/10.1088/0026-1394/38/4/3
        doi:10.1088/0026-1394/38/4/3
    """
    if units is None:
        K = 1
        m = 1
        kg = 1
    else:
        K = units.Kelvin
        m = units.meter
        kg = units.kilogram
    if T is None:
        T = 298.15 * K
    m3 = m**3
    if a is None:
        a = (
            -3.983035 * K,  # C
            301.797 * K,  # C
            522528.9 * K * K,  # C**2
            69.34881 * K,  # C
            999.974950 * kg / m3)
    if just_return_a:
        return a
    if T0 is None:
        T0 = 273.15 * K
    t = T - T0
    if warn and (_any(t < 0 * K) or _any(t > 40 * K)):
        warnings.warn("Temperature is outside range (0-40 degC)")
    return a[4] * (1 - ((t + a[0])**2 * (t + a[1])) / (a[2] * (t + a[3])))
示例#4
0
文件: SIC_toolkit.py 项目: naji-s/SIC
def SIC_for_IIR(FO=11,
                BO=3,
                AR_amp=0.1,
                ts_size=5000,
                sigma_input_noise=0.,
                sigma_output_noise=0.,
                order=10,
                report_CI=False,
                ic_type=None,
                ic_max_order=None,
                welch_window_size=1000):
    """A function to assess the performance of SIC under additive noise on input, output, both and under
        denoising in all the previous scenarios"""

    print sigma_input_noise, sigma_output_noise

    # a coefficient to reduce the influence of autoregressive coefficients to increase the chance of stability
    AR_amp_x = AR_amp_z = AR_amp

    # setting the filter coefficients that generates X_t
    A_z = append(1., random.randn(FO))
    B_z = append(1., random.randn(BO) * AR_amp_z)

    #checking whether the first filter has coefficients give rise to a stable IIR filter
    while any(abs(roots(A_z)) >= 0.95) or _any(abs(roots(B_z)) >= 0.95):
        A_z = append(1., random.randn(FO))
        B_z = append(1., random.randn(BO) * AR_amp_z)

    # setting the filter coefficients that generates Y_t
    A_x = append(1., random.randn(FO))
    B_x = append(1., random.randn(BO) * AR_amp_x)

    #checking whether the second filter has coefficients give rise to a stable IIR filter
    while any(abs(roots(A_x)) >= 0.95) or any(abs(roots(B_x)) >= 0.95):
        A_x = append(1., random.randn(FO))
        B_x = append(1., random.randn(BO) * AR_amp_x)

    #input Z as random noise to a mechanism that generates the cause: X_t
    Z = random.randn(ts_size)
    X = lfilter(A_z, B_z, Z)

    # adding additive noise to the cause
    noisy_X = X + random.randn(X.shape[0]) * sigma_input_noise

    Y = lfilter(A_x, B_x, X)

    # adding additive noise to the effect
    noisy_Y = Y + random.randn(Y.shape[0]) * sigma_output_noise

    return_SDR_dict = dict()

    return_SDR_dict['stochastic_in_out'] = asarray([
        stochastic_SDR_estimator(noisy_X,
                                 noisy_Y,
                                 report_CI=report_CI,
                                 ic_max_order=ic_max_order,
                                 ic_type=ic_type),
        stochastic_SDR_estimator(noisy_Y,
                                 noisy_X,
                                 report_CI=report_CI,
                                 ic_max_order=ic_max_order,
                                 ic_type=ic_type)
    ])
    if sigma_input_noise > 0:
        return_SDR_dict['stochastic_in'] = asarray([
            stochastic_SDR_estimator(noisy_X,
                                     Y,
                                     report_CI=report_CI,
                                     ic_max_order=ic_max_order,
                                     ic_type=ic_type),
            stochastic_SDR_estimator(Y,
                                     noisy_X,
                                     report_CI=report_CI,
                                     ic_max_order=ic_max_order,
                                     ic_type=ic_type)
        ])
    else:
        return_SDR_dict['stochastic_in'] = return_SDR_dict['stochastic_in_out']
    if sigma_output_noise > 0:
        return_SDR_dict['stochastic_out'] = asarray([
            stochastic_SDR_estimator(X,
                                     noisy_Y,
                                     report_CI=report_CI,
                                     ic_max_order=ic_max_order,
                                     ic_type=ic_type),
            stochastic_SDR_estimator(noisy_Y,
                                     X,
                                     report_CI=report_CI,
                                     ic_max_order=ic_max_order,
                                     ic_type=ic_type)
        ])
    else:
        return_SDR_dict['stochastic_out'] = return_SDR_dict[
            'stochastic_in_out']

    return_SDR_dict['deterministic_in_out'] = asarray([
        deterministic_SDR_estimator(noisy_X,
                                    noisy_Y,
                                    welch_window_size=welch_window_size),
        deterministic_SDR_estimator(noisy_Y,
                                    noisy_X,
                                    welch_window_size=welch_window_size)
    ])

    return_SDR_dict['deterministic_in'] = asarray([
        deterministic_SDR_estimator(noisy_X,
                                    Y,
                                    welch_window_size=welch_window_size),
        deterministic_SDR_estimator(Y,
                                    noisy_X,
                                    welch_window_size=welch_window_size)
    ])

    return_SDR_dict['deterministic_out'] = asarray([
        deterministic_SDR_estimator(X,
                                    noisy_Y,
                                    welch_window_size=welch_window_size),
        deterministic_SDR_estimator(noisy_Y,
                                    X,
                                    welch_window_size=welch_window_size)
    ])
    return var(X), var(Y), return_SDR_dict
def water_density(T=None, T0=None, units=None, a=None,
                  just_return_a=False, warn=True):
    """
    Density of water (kg/m3) as function of temperature (K)
    according to VSMOW model between 0 and 40 degree Celsius.
    Fitted using Thiesen's equation.

    Parameters
    ----------
    T : float
        Temperature (in Kelvin) (default: 298.15).
    T0 : float
        Value of T for 0 degree Celsius (default: 273.15).
    units : object (optional)
        Object with attributes: Kelvin, meter, kilogram.
    a : array_like (optional)
        5 parameters to the equation.
    just_return_a : bool (optional, default: False)
        Do not compute rho, just return the parameters ``a``.
    warn : bool (default: True)
        Emit UserWarning when outside temperature range.

    Returns
    -------
    Density of water (float of kg/m3 if T is float and units is None)

    Examples
    --------
    >>> print('%.2f' % water_density(277.13))
    999.97

    References
    ----------
    TANAKA M., GIRARD G., DAVIS R., PEUTO A. and BIGNELL N.,
        "Recommanded table for the density of water between 0 °C and 40 °C
        based on recent experimental reports",
        Metrologia, 2001, 38, 301-309.
        http://iopscience.iop.org/article/10.1088/0026-1394/38/4/3
        doi:10.1088/0026-1394/38/4/3
    """
    if units is None:
        K = 1
        m = 1
        kg = 1
    else:
        K = units.Kelvin
        m = units.meter
        kg = units.kilogram
    if T is None:
        T = 298.15*K
    m3 = m**3
    if a is None:
        a = (-3.983035*K,  # C
             301.797*K,  # C
             522528.9*K*K,  # C**2
             69.34881*K,  # C
             999.974950*kg/m3)
    if just_return_a:
        return a
    if T0 is None:
        T0 = 273.15*K
    t = T - T0
    if warn and (_any(t < 0*K) or _any(t > 40*K)):
        warnings.warn("Temperature is outside range (0-40 degC)")
    return a[4]*(1-((t + a[0])**2*(t + a[1]))/(a[2]*(t + a[3])))