def norm_img(data, mode='max'): out = np.nan_to_num(data) out -= np.amin(out) if mode == 'max': out /= np.amax(out) elif mode == 'mean': out /= np.amean(out) return out
def set_concn_rate_results(self, concn_array, rate_array): # This doesn't take account of detail_level! # See update_concn_rate_results() calculated_flux = \ numpy.sum(numpy.absolute(rate_array))/2 rel_diff = abs(numpy.sum(rate_array))/calculated_flux max_concn = numpy.max(concn_array) amean_concn = amean(concn_array) min_concn = numpy.min(concn_array) concn_rate = self.find('./simulation/concn_rate') if concn_rate == None: sim = self.find('./simulation') concn_rate = xmlTree.SubElement(sim, 'concn_rate') concn_rate.set('calculated_flux', str(calculated_flux)) concn_rate.set('rel_diff', str(rel_diff)) concn_rate.set('max_concn', str(max_concn)) concn_rate.set('amean_concn', str(amean_concn)) concn_rate.set('min_concn', str(min_concn))
def obj_func(point, args): ls_radius = np.array( [indx_rad_phi(point, i)[0] for i in range(df.shape[0])]) return np.log(amean(ls_radius)) - np.log(gmean(ls_radius))
def _centermesh(self, vert_sequence): """Translates mesh centroid to XYZ coordinate origin.""" centroid = amean(vert_sequence, axis=0) return array([subtract(vert,centroid) for vert in vert_sequence])