示例#1
0
 def think(self, features):
     outputs = []
     # add the first layer
     outputs.append(self.sigmoid(npdot(features, self.layers[0].weights)))
     for index in range(1, len(self.layers)):
         # calculate all successive output layers
         outputs.append(
             self.sigmoid(
                 npdot(outputs[len(outputs) - 1],
                       self.layers[index].weights)))
     return outputs
示例#2
0
	def test_dot_list(self):
		n = 10
		a = rand(n,3)
		b = rand(n,3)

		np = zeros(n)
		for i in xrange(n):
			np[i] = npdot(a[i],b[i])

		assert_allclose(np,dot(a,b))
示例#3
0
def rigid_transform_3D(MatA, MatB):
    '''
    Pass in 2 numpy arrays to get the R and t
    '''
    assert len(MatA) == len(MatB)
    N = MatA.shape[0]
    comA = npmean(MatA, axis=0)
    comB = npmean(MatB, axis=0)
    A = MatA - nptile(comA, (N, 1))
    B = MatB - nptile(comB, (N, 1))
    H = npdot(nptranspose(A), B)
    U, S, V = nplinalgsvd(H)
    R = npdot(nptranspose(V), nptranspose(U))
    if nplinalgdet(R) < 0:
        V[2, :] *= -1
        R = npdot(nptranspose(V), nptranspose(U))
    t = -npdot(R, nptranspose(comA)) + nptranspose(comB)

    return R, t
示例#4
0
    def compute(self, get):
        u1 = get(self.valuename1)
        u2 = get(self.valuename2)

        if u1 is None or u2 is None:
            return

        if not (isinstance(u1, GenericFunction)
                or isinstance(u2, GenericFunction)):
            return npdot(u1, u2)

        if not isinstance(u1, GenericFunction):
            u1 = Constant(u1)
            u1, u2 = u2, u1
        if not isinstance(u2, GenericFunction):
            u2 = Constant(u2)

        if isinstance(u2, Function):
            u1, u2 = u2, u1

        assert isinstance(u1, Function)
        assert isinstance(u2, GenericFunction)

        if u1.value_rank() == u2.value_rank():
            if u1.value_rank() == 0:
                V = u1.function_space()
            else:
                V = u1.function_space().sub(0).collapse()
        elif u1.value_rank() > u2.value_rank():
            assert u2.value_rank() == 0
            V = u1.function_space()
            u1, u2 = u2, u1
        else:
            assert isinstance(u2, Function)
            assert u1.value_rank() == 0
            V = u2.function_space()

        #N = max([u1.value_rank(), u2.value_rank()])

        if not hasattr(self, "u"):
            self.u = Function(V)

        if isinstance(u2, Function) and u1.function_space().dim(
        ) == u2.function_space().dim() and u1.value_rank() == 0:
            self.u.vector()[:] = u1.vector().array() * u2.vector().array()
        elif u1.value_rank() == u2.value_rank():
            project(dot(u1, u2), function=self.u, V=self.u.function_space())
        else:
            assert u1.value_rank() == 0
            if isinstance(u1, Constant):
                self.u.vector()[:] = float(u1) * u2.vector().array()
            else:
                project(u1 * u2, function=self.u, V=self.u.function_space())

        return self.u
示例#5
0
	def test_dot_matrix(self):
		n = 10
		a = rand(n,n,3)
		b = rand(n,n,3)

		np = zeros((n,n))
		for i in xrange(n):
			for j in xrange(n):
				np[i,j] = npdot(a[i,j],b[i,j])

		assert_allclose(np,dot(a,b))
示例#6
0
    def forward(self):
        """
        Set self.value to the value of the linear function output.

        Your code goes here!
        """
        # from numpy import multiply as npmultiply
        # self.value = sum(npmultiply(self.inbound_nodes[0].value, self.inbound_nodes[1].value)) + self.inbound_nodes[2].value
        from numpy import dot as npdot
        self.value = npdot(
            self.inbound_nodes[0].value,
            self.inbound_nodes[1].value) + self.inbound_nodes[2].value
示例#7
0
def tmalign(pose, ref_pose):
    '''
    Takes a pose (with or without a ligand) and overlays it with the ref pose
    Assumes the ligand (if any) is in the pose to be moved
    input: pose, reference_pose
    output: atommap, and tm object
    use: atommap , tm = tmalign(model,crystal)
    
    '''

    print 'Running tmalign on poses'
    print 'Starting xyz coords for res1 CA pose and reference pose'
    print pose.residue(1).xyz('CA')
    print ref_pose.residue(1).xyz('CA')

    ligs = False
    listlig = []
    for i in range(1, pose.total_residue() + 1):
        if pose.residue(i).is_ligand():
            listlig.append(i)

    if len(listlig) > 0:
        print 'Ligand detected, will also overlay'
        ligs = True
        copy = Pose()
        copy.assign(pose)

        offset = len(listlig)

    # construct the TMalign object
    tm = rosetta.protocols.hybridization.TMalign()
    tm.apply(pose, ref_pose)
    longest = max(pose.n_residue() + 1, ref_pose.n_residue() + 1)

    print 'TMScore = %s ' % tm.TMscore(longest)
    #print tm.TMscore(longest)

    # Now pull the atom mapping from tmalign
    # tmalign makes it's own alignment so we use that to do the ''partial'' threading

    # some setup for alignment2AtomMap method
    atommap = rosetta.core.id.AtomID_Map_T_core_id_AtomID_T()
    #    atommap =  rosetta.core.id.AtomID_Map_core_id_AtomID_t()
    rosetta.core.pose.initialize_atomid_map(atommap, pose)
    tm.alignment2AtomMap(pose, ref_pose, atommap)

    # some setup for partial thread
    aln_cutoff = rosetta.utility.vector1_Real()
    #    aln_cutoff = rosetta.utility.vector1_double()
    for i in [2, 1.5, 1.0, .5]:
        aln_cutoff.append(i)


#    min_coverage = .2
    min_coverage = .5
    rosetta.protocols.hybridization.partial_align(pose, ref_pose, atommap,
                                                  True, aln_cutoff,
                                                  min_coverage)

    print 'Hopefully these coordinates have changed, use the PyMolMover / Observer to watch in realtime'
    print pose.residue(1).xyz('CA')
    print ref_pose.residue(1).xyz('CA')

    print "Checking for ligand, will move it too!"

    if ligs:
        precoord = []
        postcoord = []
        for i in range(1, pose.total_residue() + 1 - offset):
            try:
                pre_i = copy.residue(i).atom('CA').xyz()
                prexyz = [pre_i.x, pre_i.y, pre_i.z]
                precoord.append(prexyz)
                post_i = pose.residue(i).atom('CA').xyz()
                postxyz = [post_i.x, post_i.y, post_i.z]
                postcoord.append(postxyz)
            except:
                pass
        premat = nparray(precoord, dtype=npfloat64)
        postmat = nparray(postcoord, dtype=npfloat64)
        R, t = rigid_transform_3D(premat, postmat)
        for j in listlig:
            for k in range(1, pose.residue(j).natoms() + 1):
                ligatm = pose.residue(j).atom(k)
                prevec = nparray(
                    [ligatm.xyz().x,
                     ligatm.xyz().y,
                     ligatm.xyz().z],
                    dtype=npfloat64)
                postvec = npdot(R, prevec) + t
                newrosettavec = rosetta.numeric.xyzVector_Real(
                    postvec[0], postvec[1], postvec[2])
                pose.set_xyz(rosetta.core.id.AtomID(k, j), newrosettavec)

    return (atommap, tm)
示例#8
0
 def reflection(cls, s1, s2):
     v1 = s1.vector
     v2 = s2.vector
     v_reflected = (2 * npdot(v1, v2) * v2) - v1
     return cls(v_reflected)
示例#9
0
 def dot(s1, s2):
     real = npdot(s1.vector, s2.vector)
     return real
示例#10
0
def dot(matrices):
    res = matrices[0]
    for m in matrices[1:]:
        res = npdot(res, m)
    return res
示例#11
0
L = f*v*dx                                    # load vector form

bc = DirichletBC(V, Constant(0), DomainBoundary())  # homog. boundary condition

# check the matrices
h = mesh.hmin()
A = assemble(a)
M = assemble(m)
bc.apply(A); bc.apply(M)  # the matrices include entries for phi_0, phi_10

# check the load vector first, for later we will cancel h
b = assemble(L)
bc.apply(b)

F = interpolate(f, V).vector().array()
b_hand = npdot(M.array(), F)
b_hand[0] = 0; b_hand[-1] = 0         # set the bcs

b[:] -= b_hand
print "Is b okay", b.norm("l1") < 1E-15, "\n"

# remove the phi_0, phi_10 entries for easier comparison
h = mesh.hmin()
A =  A.array()[1:-1, 1:-1]*h
M = M.array()[1:-1, 1:-1]*6/h

print "A", "\n", A, "\n"
print "M", "\n", M, "\n"

# if visual comparison is not enough
A_col = zeros(9); A_col[0] = 2; A_col[1] = -1;
示例#12
0
u = TrialFunction(V)
v = TestFunction(V)
bc = DirichletBC(V, Constant(0), DomainBoundary())
A, _ = assemble_system(inner(grad(u), grad(v))*dx, Constant(0)*v*dx, bc)
M, _ = assemble_system(u*v*dx, Constant(0)*v*dx, bc)

e, l = octave.eig(A.array(), M.array())
e = matrix(e)
l = matrix(l)

u = interpolate(Expression("sin(k*pi*x[0])", k=1), V)
U = matrix(u.vector().array())

# norm from assemble
aL2 = sqrt(assemble(u**2*dx))
aH10 = sqrt(assemble(inner(grad(u), grad(u))*dx))

M = matrix(M.array()) # cast M so that numpy can work with it
eL2, eH10 = 0, 0
for k in range(V.dim()):
  F = matrix(e[:, k])  # select k-th eigenvector
  lmbda = l[k, k]      # select k-th eigenvalue
  eL2 += npdot(npdot(U, M), F)**2
  eH10 += lmbda*(npdot(npdot(U, M), F))**2

eL2 = msqrt(eL2); eH10 = msqrt(eH10)
diffL2 = abs(eL2 - aL2); diffH10 = abs(eH10 - aH10)
print "L2 assemble %g, eigenvalues %g, diff %g" % (aL2, eL2, diffL2)
print "H10 assemble %g, eigenvalues %g, diff %g" % (aH10, eH10, diffH10)
for i in range(n):
  if abs(eign[i].real) < 10*DOLFIN_EPS:
    null_space_dim += 1
    basis_vectors.append(eigv[:, i])
print "Nullspace has dim", null_space_dim, "\n"

# orthogonalize the eigenvectors
basis_vectors, R = qr(array(basis_vectors).T)
basis_vectors = basis_vectors.real

# test the vectors and build the nullspace for Krylov
print "Basis test"
null_vectors = []
for i in range(null_space_dim):
  print "Basis vector %d of nullspace ?" % i,
  print all(abs(npdot(A.array(), basis_vectors[:, i])) < 100*DOLFIN_EPS)

  fun = Function(V)
  fun_v = fun.vector()
  fun_v[:] = array(basis_vectors[:, i].tolist())
  plot(fun, interactive=True, title="QR basis")

  null_vectors.append(fun.vector())

null_space = VectorSpaceBasis(null_vectors)
null_space.orthogonalize(b)

solver.set_nullspace(null_space)
solver.solve(u_QR.vector(), b)

# ONES
示例#14
0
 def _compute(x):
     return npdot(x, w) / total_weight
示例#15
0
文件: Vector.py 项目: matty-l/Lilac
	def dot( self, vector ):
		""" Returns the dot product of this vector and the given vector """
		return npdot( self, vector ) # homogenous doesn't matter
示例#16
0
def dot(matrices):
    res = matrices[0]
    for m in matrices[1:]:
        res = npdot(res, m)
    return res