示例#1
0
def rand_trans(nst: int,
               npl: int = 1,
               sparsity: float = 1.,
               rng: np.random.Generator = RNG,
               **kwds) -> la.lnarray:
    """
    Make a random transition matrix (continuous time).

    Parameters
    ----------
    n : int
        total number of states
    npl : int
        number of matrices
    sparsity : float, optional
        sparsity, by default 1

    Returns
    -------
    mat : la.lnarray
        transition matrix
    """
    params = rng.random((npl, num_param(nst, **kwds)))
    if sparsity < 1.:
        ind = rng.random(params.shape)
        params[ind > sparsity] = 0.
    return params_to_mat(params, **kwds)
def generate_problem(n: int, rg: np.random.Generator):
    route = list(range(n))
    rg.shuffle(route)
    dm = rg.random((n, n)) * 1000
    tm = rg.random((n, n)) * 1000
    tw = rg.random(n) * 1000
    tw = np.vstack((tw, tw + 1000)).T
    t = rg.random() * 100
    return [route, dm, tm, tw, t, {}]
示例#3
0
    def get_random_point(
        self,
        boundary_distance: float = 0,
        cartesian: bool = True,
        avoid_center: bool = False,
        rng: np.random.Generator = None,
    ) -> np.ndarray:
        """return a random point within the grid

        Note that these points will be uniformly distributed on the radial axis,
        which implies that they are not uniformly distributed in the volume.

        Args:
            boundary_distance (float): The minimal distance this point needs to
                have from all boundaries.
            cartesian (bool): Determines whether the point is returned in
                Cartesian coordinates or grid coordinates.
            avoid_center (bool): Determines whether the boundary distance
                should also be kept from the center, i.e., whether points close
                to the center are returned.
            rng (:class:`~numpy.random.Generator`):
                Random number generator (default: :func:`~numpy.random.default_rng()`)

        Returns:
            :class:`~numpy.ndarray`: The coordinates of the point
        """
        if rng is None:
            rng = np.random.default_rng()

        # handle the boundary distance
        r_min = boundary_distance if avoid_center else 0
        r_mag = self.radius - boundary_distance - r_min
        z_min, z_max = self.axes_bounds[1]

        if boundary_distance != 0:
            z_min += boundary_distance
            z_max -= boundary_distance
            if r_mag <= 0 or z_max <= z_min:
                raise RuntimeError(
                    "Random points would be too close to boundary")

        # create random point
        r = r_mag * rng.random() + r_min
        z = z_min + (z_max - z_min) * rng.random()
        point = np.array([r, z])
        if cartesian:
            return self.point_to_cartesian(point)
        else:
            return point
    def sample_generator(rg: np.random.Generator, locs):
        lat, lon = get_sample(locs,
                              rg,
                              cd,
                              sample_df,
                              CHC_df,
                              CHC_sub,
                              CHC_sub_dict,
                              save=False)
        time_windows = np.zeros((len(lat), 2))
        for i in range(len(lat)):
            if rg.random() > 0.5:
                time_windows[i, 0] = 0
                time_windows[i, 1] = 14400
            else:
                time_windows[i, 0] = 14400
                time_windows[i, 1] = 28800

        customers = [
            Customer(
                lat[i],
                lon[i],
                0.8,
                0.8,
                rg=rg,
                presence=[1 for _ in range(28800)],
                presence_interval=1.6,
            ) for i in range(len(lat))
        ]

        return customers, time_windows
    def sample_generator(rg: np.random.Generator):
        lat, lon = get_sample(
            arrival_rate,  # rg.poisson(arrival_rate),
            rg,
            cd,
            sample_df,
            CHC_df,
            CHC_sub,
            CHC_sub_dict,
            save=False,
        )
        time_windows = np.zeros((len(lat), 2))
        for i in range(len(lat)):
            interval = (day_end - day_start) / num_time_windows
            for j in range(num_time_windows):
                if rg.random() > (num_time_windows -
                                  (j + 1)) / num_time_windows:
                    time_windows[i, 0] = interval * j
                    time_windows[i, 1] = interval * (j + 1)
                    break

        customers = [
            Customer(lat[i], lon[i], 0.5, 0.5, rg=rg) for i in range(len(lat))
        ]

        return customers, time_windows
示例#6
0
def rand_trans_d(nst: int,
                 npl: int = 1,
                 sparsity: float = 1.,
                 rng: np.random.Generator = RNG,
                 **kwds) -> la.lnarray:
    """
    Make a random transition matrix (discrete time).

    Parameters
    ----------
    n : int
        total number of states
    npl : int
        number of matrices
    sparsity : float, optional
        sparsity, by default 1

    Returns
    -------
    mat : la.lnarray
        transition matrix
    """
    if any(kwds.get(opt, False) for opt in ('uniform', 'serial', 'ring')):
        trans = rand_trans(nst, npl, sparsity, rng, **kwds)
        stochastify_pd(trans)
        return trans
    trans = rng.random((npl, nst, nst)).squeeze()
    stochastify_d(trans)
    return trans
示例#7
0
    def get_random_point(
        self,
        boundary_distance: float = 0,
        cartesian: bool = True,
        rng: np.random.Generator = None,
    ) -> np.ndarray:
        """return a random point within the grid

        Args:
            boundary_distance (float): The minimal distance this point needs to
                have from all boundaries.
            cartesian (bool): Determines whether the point is returned in
                Cartesian coordinates or grid coordinates. This does not have
                any effect for Cartesian coordinate systems, but the argument is
                retained to have a unified interface for all grids.
            rng (:class:`~numpy.random.Generator`):
                Random number generator (default: :func:`~numpy.random.default_rng()`)

        Returns:
            :class:`~numpy.ndarray`: The coordinates of the point
        """
        if rng is None:
            rng = np.random.default_rng()

        # handle the boundary distance
        cuboid = self.cuboid
        if boundary_distance != 0:
            if any(cuboid.size <= 2 * boundary_distance):
                raise RuntimeError(
                    "Random points would be too close to boundary")
            cuboid = cuboid.buffer(-boundary_distance)

        # create random point
        return cuboid.pos + rng.random(self.dim) * cuboid.size  # type: ignore
示例#8
0
def rand_fancyindex(
    rng: np.random.Generator,
    index_length: int,
    dtype: np.dtype,
    source_arr_len: int,
    invalid_ratio: Optional[float] = None,
) -> np.ndarray:
    """Create a random fancy index with the specified length and dtype."""
    check_params(dtype, invalid_ratio)
    if dtype.kind not in "iu":  # TODO: Also support floats, since mbget allows that
        raise ValueError(
            f"Only integer dtypes are currently supported by this method. dtype={dtype.name}"
        )

    # Generate the fancy index from the uniform integer distribution.
    fancyindex = FastArray(
        rng.integers(0, source_arr_len, size=index_length, dtype=dtype)
    )

    # If the fancy index should have some invalids/NA values, add those in now.
    if invalid_ratio is not None and invalid_ratio > 0.0:
        # TODO: Also add in some out-of-bounds accesses (and not just invalid/NA values) here?
        invalid_outcomes = FastArray(rng.random(size=index_length))
        putmask(fancyindex, invalid_outcomes < invalid_ratio, fancyindex.inv)

    return fancyindex
示例#9
0
    def _ctmp_inverse(
            n_samples: int, probs: np.ndarray, gamma: float,
            csc_data: np.ndarray, csc_indices: np.ndarray,
            csc_indptrs: np.ndarray,
            rng: np.random.Generator) -> Tuple[Tuple[int], Tuple[int]]:
        """Apply CTMP algorithm to input counts dictionary, return
        sampled counts and associated shots. Equivalent to Algorithm 1 in
        Bravyi et al.

        Args:
            n_samples: Number of times to sample in CTMP algorithm.
            probs: probability vector constructed from counts.
            gamma: noise strength parameter
            csc_data: Sparse CSC matrix data array (`csc_matrix.data`).
            csc_indices: Sparse CSC matrix indices array (`csc_matrix.indices`).
            csc_indptrs: Sparse CSC matrix indices array (`csc_matrix.indptrs`).
            rng: RNG generator object.

        Returns:
            Tuple[Tuple[int], Tuple[int]]: Resulting list of shots and associated
            signs from the CTMP algorithm.
        """
        alphas = rng.poisson(lam=gamma, size=n_samples)
        signs = np.mod(alphas, 2)
        x_vals = rng.choice(len(probs), size=n_samples, p=probs)

        # Apply CTMP sampling
        r_vals = rng.random(size=alphas.sum())
        y_vals = np.zeros(x_vals.size, dtype=np.int)
        _markov_chain_compiled(y_vals, x_vals, r_vals, alphas, csc_data,
                               csc_indices, csc_indptrs)

        return y_vals, signs
示例#10
0
def sim_markov_c(rates: la.lnarray,
                 peq: Optional[np.ndarray] = None,
                 num_jump: Optional[int] = None,
                 max_time: Optional[float] = None,
                 rng: np.random.Generator = RNG) -> Tuple[la.lnarray, ...]:
    """Simulate Markov process trajectory.

    Parameters
    ----------
    rates : la.lnarray (n,n)
        Continuous time stochastic matrix.
    peq : la.lnarray (n,), optional
        Initial-state distribution, default: use steady-state.
    num_jump : int, optional, default: None
        Stop after this many jumps.
    max_time : float, optional, default: None
        Stop after this much time.

    Returns
    -------
    states : la.lnarray (w,)
        Vector of states visited.
    dwells : la.lnarray (w,)
        Time spent in each state.
    """
    rates = la.asanyarray(rates)
    if peq is None:
        peq = calc_peq(rates)[0]
    num_states = len(peq)
    dwell = -1. / np.diagonal(rates)
    jump = rates * dwell.c
    jump[np.diag_indices(num_states)] = 0.

    est_num = num_jump
    if num_jump is None:
        if max_time is None:
            raise ValueError("Must specify either num_jump or max_time")
        est_num = int(5 * max_time / mean_dwell(rates, peq))
    if max_time is None:
        max_time = np.inf
    est_num = max(est_num, 1)

    dwells_from = -dwell.c * np.log(rng.random(est_num))
    states = sim_markov_d(jump, peq, est_num, rng)
    dwells = dwells_from[states, la.arange(est_num)]

    states, dwells = states[slice(num_jump)], dwells[slice(num_jump)]
    cum_dwell = np.cumsum(dwells)
    mask = cum_dwell < max_time
    if not mask[-1]:
        ind = np.nonzero(~mask)[0][0]
        mask[ind] = True
        dwells[ind] -= cum_dwell[ind] - max_time
    states, dwells = states[mask], dwells[mask]

    return states, dwells
示例#11
0
def get_index_growth(
    rng: np.random.Generator,
    size: Tuple[int, int],
) -> np.ndarray:
    """Calculates cumulative growth to mimic index growth."""
    # Subtracts 0.2 from values [0, 1] so that 1/5 have negative sign.
    # This is arbitrary, and results in the index increasing in 4 out
    # of 5 months.
    signs = np.sign(rng.random(size) - 0.2)

    # Takes a poisson dist with lambda = 1 and adds some random noise.
    # Multiply by signs to apply increasing / decreasing.
    pois = rng.poisson(1, size)
    noise = rng.random(size)

    growth = (pois + noise) * signs
    growth[0, :] = 0  # No growth at index start.

    return growth.cumsum(axis=0)
示例#12
0
def markov_presence(n, prob: float, rg: np.random.Generator):
    """Simulates a symmetric markov chain, to generate a presence array for the customer."""
    presence = np.zeros(n, dtype=bool)
    presence[0] = True  # Start in state with 50% chance
    for i in range(n - 1):
        if rg.random() < prob:
            presence[i + 1] = not presence[i]
        else:
            presence[i + 1] = presence[i]

    return presence
示例#13
0
def rand_array(rng: np.random.Generator, length: int, dtype: np.dtype, invalid_ratio: Optional[float] = None) -> np.ndarray:
    # TODO: Implement a flag that controls whether invalid values are included in the array? Or (instead) an invalid_ratio parameter like our other functions?
    check_params(dtype, invalid_ratio)

    if dtype.kind in "iu":
        info = np.iinfo(dtype)
        arr = FastArray(rng.integers(info.min, info.max, size=length, dtype=dtype))

    elif dtype.kind == "f":
        # PERF: Use an FMA function here if we ever implement one
        arr = (FastArray(rng.random(size=length, dtype=dtype)) * 1e10) - 0.5e10

    elif dtype.kind == "S":
        # Generate integers in the upper ASCII range, then use a view to expose those
        # values as fixed-length ASCII strings.
        # TODO: Support other character ranges (lower-range ASCII 0-127, full ASCII 0-255, lowercase+uppercase+digits).
        arr = FastArray(rng.integers(
            65, 90, size=length * dtype.itemsize, dtype=np.int8, endpoint=True
        ).view(dtype))

    elif dtype.kind == "U":
        # Generate integers in the upper ASCII range.
        # TODO: Support other character ranges (lower-range ASCII 0-127, full ASCII 0-255, lowercase+uppercase+digits, Unicode chars >255).
        arr = FastArray(rng.integers(
            65, 90, size=length * (dtype.itemsize // 4), dtype=np.int32, endpoint=True
        ).view(dtype))

    else:
        # TODO: Handle other dtypes
        raise NotImplementedError(
            f"The dtype {dtype} is not yet supported by this function."
        )

     # If the fancy index should have some invalids/NA values, add those in now.
    if invalid_ratio is not None and invalid_ratio > 0.0:
        # TODO: Also add in some out-of-bounds accesses (and not just invalid/NA values) here?
        invalid_outcomes = FastArray(rng.random(size=length))
        putmask(arr, invalid_outcomes < invalid_ratio, arr.inv)

    return arr
示例#14
0
def gen_signal_2d_rectangle(ps2d: np.ndarray,
                            f: np.ndarray,
                            x: np.ndarray,
                            y: np.ndarray,
                            rng: np.random.Generator,
                            fminx: float,
                            fminy: float,
                            fmax: float,
                            alpha: int = 10) -> np.ndarray:
    """TODO(lgaultier)"""
    revert = fminy < fminx
    if revert:
        fmin, fminy = fminy, fminx
        x, y = y, x
    else:
        fmin = fminx

    # Go alpha times further in frequency to avoid interpolation aliasing.
    fmaxr = alpha * fmax

    # Build the 2D PSD following the given 1D PSD
    fx = np.concatenate(([0], f))
    fy = np.concatenate(([0], np.arange(fminy, fmaxr + fminy, fminy)))
    dfx, dfy = fmin, fminy

    phase = rng.random((2 * len(fy) - 1, len(fx))) * 2 * np.pi
    phase[0, 0] = 0.
    phase[-len(fy) + 1:, 0] = -phase[1:len(fy), 0][::-1]

    fft2a = np.concatenate((0.25 * ps2d, 0.25 * ps2d[1:, :][::-1, :]), axis=0)
    fft2a = np.sqrt(fft2a) * np.exp(1j * phase) / np.sqrt((dfx * dfy))
    fft2 = np.zeros((2 * len(fy) - 1, 2 * len(fx) - 1), dtype=complex)
    fft2[:, :len(fx)] = fft2a
    fft2[1:, -len(fx) + 1:] = fft2a[1:, 1:].conj()[::-1, ::-1]
    fft2[0, -len(fx) + 1:] = fft2a[0, 1:].conj()[::-1]

    sg = (4 * fy[-1] * fx[-1]) * np.real(IFFT2(fft2))
    xg = np.linspace(0, 1 / fmin, sg.shape[1])
    yg = np.linspace(0, 1 / fminy, sg.shape[0])
    xgmax = xg.max()
    ygmax = yg.max()

    yl = y - y[0]
    yl = yl[yl < yg.max()]
    xl = x - x[0]
    xl = xl[xl < xg.max()]
    rectangle = np.ascontiguousarray(
        scipy.interpolate.interp2d(xg, yg, sg)(xl, yl))
    signal = _calculate_signal(rectangle, x, y, xgmax, ygmax)

    return signal.transpose() if revert else signal
示例#15
0
def _gen_signal_1d(fi: np.ndarray,
                   psi: np.ndarray,
                   x: np.ndarray,
                   rng: np.random.Generator,
                   fmin: Optional[float] = None,
                   fmax: Optional[float] = None,
                   alpha: int = 10,
                   lf_extpl: bool = False,
                   hf_extpl: bool = False) -> np.ndarray:
    """Generate 1d random signal using Fourier coefficient"""
    # Make sure fi, PSi does not contain the zero frequency:
    psi = psi[fi > 0]
    fi = fi[fi > 0]

    # Adjust fmin and fmax to fi bounds if not specified. Values are bounded
    # with respect to the frequencies of the processed spectrum.
    fmin = fmin or fi[0]
    fmax = fmax or fi[-1]

    # Go alpha times further in frequency to avoid interpolation aliasing.
    fmaxr = alpha * fmax

    # Interpolation of the non-zero part of the spectrum
    f = np.arange(fmin, fmaxr + fmin, fmin)
    mask = psi > 0
    ps = np.exp(np.interp(np.log(f), np.log(fi[mask]), np.log(psi[mask])))

    # lf_extpl=True prolongates the PSi as a plateau below min(fi).
    # Otherwise, we consider zeros values. same for hf
    ps[f < fi[0]] = psi[0] if lf_extpl else 0
    ps[f > fi[-1]] = psi[-1] if hf_extpl else 0
    ps[f > fmax] = 0

    # Detect the sections (if any) where PSi==0 and apply it to PS
    mask = np.interp(f, fi, psi)
    ps[mask == 0] = 0

    f_size = f.size
    phase = np.empty((2 * f_size + 1))
    phase[1:(f_size + 1)] = rng.random(f_size) * 2 * np.pi
    phase[0] = 0
    phase[-f_size:] = -phase[1:(f_size + 1)][::-1]

    fft1a = np.concatenate((np.array([0]), 0.5 * ps, 0.5 * ps[::-1]), axis=0)
    fft1a = np.sqrt(fft1a) * np.exp(1j * phase) / np.sqrt(fmin)

    yg = 2 * fmaxr * np.real(IFFT(fft1a))
    xg = np.linspace(0, 0.5 / fmaxr * yg.shape[0], yg.shape[0])

    return np.interp(np.mod(x, xg.max()), xg, yg)
示例#16
0
    def get_random_point(
        self,
        *,
        boundary_distance: float = 0,
        coords: str = "cartesian",
        rng: np.random.Generator = None,
        cartesian: bool = None,
    ) -> np.ndarray:
        """return a random point within the grid

        Args:
            boundary_distance (float): The minimal distance this point needs to
                have from all boundaries.
            coords (str):
                Determines the coordinate system in which the point is specified. Valid
                values are `cartesian`, `cell`, and `grid`;
                see :meth:`~pde.grids.base.GridBase.transform`.
            rng (:class:`~numpy.random.Generator`):
                Random number generator (default: :func:`~numpy.random.default_rng()`)

        Returns:
            :class:`~numpy.ndarray`: The coordinates of the point
        """
        if cartesian is not None:
            # deprecated on 2022-03-11
            warnings.warn(
                "Argument `cartesian` is deprecated. Use `coords` instead")
            coords = "cartesian" if cartesian else "grid"

        if rng is None:
            rng = np.random.default_rng()

        # handle the boundary distance
        cuboid = self.cuboid
        if boundary_distance != 0:
            if any(cuboid.size <= 2 * boundary_distance):
                raise RuntimeError(
                    "Random points would be too close to boundary")
            cuboid = cuboid.buffer(-boundary_distance)

        # create random point
        point = cuboid.pos + rng.random(self.dim) * cuboid.size

        if coords == "cartesian" or coords == "grid":
            return point  # type: ignore
        elif coords == "cell":
            return self.transform(point, "grid", "cell")
        else:
            raise ValueError(f"Unknown coordinate system `{coords}`")
示例#17
0
文件: hp.py 项目: jkarns275/cute
    def simplex(self, best, parent_values: List, rng: np.random.Generator):
        assert len(parent_values) >= 1
        assert type(best) == self.type
        assert list(map(type,
                        parent_values)) == ([self.type] * len(parent_values))

        centroid = sum(parent_values) / len(parent_values)
        gradient = best - centroid
        weight = EvolvableHP.WEIGHT_MAX * rng.random(
        ) - EvolvableHP.WEIGHT_MAX / 2

        midpoint = best + centroid / 2

        value = self.type(midpoint + gradient * weight)
        value = min(value, self.max)
        value = max(value, self.min)
        return self.type(value)
def prepare_partitions(
    label_list: ty.List[str],
    dataset_raw_folder: Path,
    test_fold_size: float = 0.1,
    val_fold_size: float = 0.1,
    rng: np.random.Generator = None,
) -> ty.Tuple[ty.Dict[str, ty.List[str]], ty.Dict[str, ty.Tuple[str, str]]]:
    r"""MAKEDOC: what is prepare_partitions doing?"""
    # logg = logging.getLogger(f"c.{__name__}.prepare_partitions")
    # logg.setLevel("INFO")
    # logg.debug("Start prepare_partitions")

    partition: ty.Dict[str, ty.List[str]] = {
        "training": [],
        "validation": [],
        "testing": [],
    }
    ids2labels: ty.Dict[str, ty.Tuple[str, str]] = {}

    # get a new rng, if you want repeatable folds pass your own
    if rng is None:
        rng = np.random.default_rng(int(timer()))

    # analyse all interesting classes
    for label in label_list:

        label_folder = dataset_raw_folder / label

        for img_raw_path in label_folder.iterdir():
            img_stem = img_raw_path.stem
            img_name = f"{label}/{img_raw_path.name}"

            x = rng.random()
            if x < test_fold_size:
                which = "testing"
            elif x < test_fold_size + val_fold_size:
                which = "validation"
            else:
                which = "training"

            ID = img_name
            partition[which].append(ID)
            ids2labels[ID] = (label, img_stem)

    return partition, ids2labels
示例#19
0
    def __init__(self,
                 ps2d: np.ndarray,
                 f: np.ndarray,
                 rng: np.random.Generator,
                 fminx: float,
                 fminy: float,
                 fmax: float,
                 alpha: int = 10) -> None:
        revert = fminy < fminx
        if revert:
            fmin, fminy = fminy, fminx
        else:
            fmin = fminx

        # Go alpha times further in frequency to avoid interpolation aliasing.
        fmaxr = alpha * fmax

        # Build the 2D PSD following the given 1D PSD
        fx = np.concatenate(([0], f))
        fy = np.concatenate(([0], np.arange(fminy, fmaxr + fminy, fminy)))
        dfx, dfy = fmin, fminy

        phase = rng.random((2 * len(fy) - 1, len(fx))) * 2 * np.pi
        phase[0, 0] = 0.
        phase[-len(fy) + 1:, 0] = -phase[1:len(fy), 0][::-1]

        fft2a = np.concatenate((0.25 * ps2d, 0.25 * ps2d[1:, :][::-1, :]),
                               axis=0)
        fft2a = np.sqrt(fft2a) * np.exp(1j * phase) / np.sqrt((dfx * dfy))
        fft2 = np.zeros((2 * len(fy) - 1, 2 * len(fx) - 1), dtype=complex)
        fft2[:, :len(fx)] = fft2a
        fft2[1:, -len(fx) + 1:] = fft2a[1:, 1:].conj()[::-1, ::-1]
        fft2[0, -len(fx) + 1:] = fft2a[0, 1:].conj()[::-1]

        sg = (4 * fy[-1] * fx[-1]) * np.real(IFFT2(fft2))
        xg = np.linspace(0, 1 / fmin, sg.shape[1])
        yg = np.linspace(0, 1 / fminy, sg.shape[0])
        self.xgmax = xg.max()
        self.ygmax = yg.max()
        self.reverse = revert

        self.xg = xg
        self.yg = yg
        self.sg = sg
def test_raise_on_vector_dimension_mismatch(
    N: int,
    L: np.ndarray,
    rng: np.random.Generator,
    method_kwargs: Dict[str, Any],
):
    """Tests whether a :class:`ValueError` is raised if the shape of the vector is not
    compatible with the shape of the Cholesky factor"""

    # Generate arbitrary v with incompatible length
    v_len = N + rng.integers(-N, N, endpoint=True) + 1

    if v_len == N:
        v_len += 1

    v = rng.random(v_len)

    with pytest.raises(ValueError):
        cholupdates.rank_1.downdate(L=L, v=v, **method_kwargs)
    def sample_generator(rg: np.random.Generator):
        lat, lon = get_sample(100,
                              rg,
                              cd,
                              sample_df,
                              CHC_df,
                              CHC_sub,
                              CHC_sub_dict,
                              save=False)
        time_windows = np.zeros((len(lat), 2))
        for i in range(len(lat)):
            if rg.random() > 0.5:
                time_windows[i, 0] = 0
                time_windows[i, 1] = 14400
            else:
                time_windows[i, 0] = 14400
                time_windows[i, 1] = 28800

        customers = [
            Customer(lat[i], lon[i], 0.8, 0.8, rg=rg) for i in range(len(lat))
        ]

        return customers, time_windows
示例#22
0
文件: hp.py 项目: jkarns275/cute
 def random_initialization(self, rng: np.random.Generator):
     weight = rng.random()
     diff = self.max - self.min
     return self.type(diff * weight + self.min)
示例#23
0
def sample_generator(rg: np.random.Generator, n):
    cd = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "data")
    sample_data = os.path.join(cd, "Toll_CHC_November_Sample_Data.csv")
    CHC_data = os.path.join(cd, "christchurch_street.csv")
    sample_df, CHC_df, CHC_sub, CHC_sub_dict = read_data(
        sample_data,
        CHC_data,
        lat_min=-43.6147000,
        lat_max=-43.4375000,
        lon_min=172.4768000,
        lon_max=172.7816000,
    )

    # customers = [Customer(lat,lon, 0.9, 0.9, presence_list[i]) for i in range(len(lat))]
    lat, lon = get_sample(n,
                          rg,
                          cd,
                          sample_df,
                          CHC_df,
                          CHC_sub,
                          CHC_sub_dict,
                          save=False)

    time = 5400
    rerouting_tw = True

    day_start = 0
    day_end = 28800
    num_time_windows = 4
    interval = (day_end - day_start) / num_time_windows
    num_presence = 8  # presence has 48 digits for an interval of 10 minutes
    interval_presence = (day_end - day_start) / num_presence
    presence_per_tw = int(num_presence / num_time_windows)
    # lat, lon = get_sample(5, rg, cd, sample_df, CHC_df, CHC_sub, CHC_sub_dict, save=False)
    presence_list = []
    time_windows = np.zeros((len(lat), 2))
    rd = rg.integers(low=0, high=2**num_presence - 1, size=n)

    for i in range(len(lat)):
        # get a random decimal number between 0-255
        # rd = rg.integers(low=0, high=2**num_presence-1, size=1)[0] # a list of random numbers
        # rd = random.randint(0,2**num_presence-1)
        # get a list of binary number representing the presence for each presence interval
        presence = list(map(int, "{0:08b}".format(rd[i])))

        presence_list.append(presence)  # to assign to the customer later on

        pres = presence[:]
        if rerouting_tw is True:
            j = 0
            # switch presence off if the time has passed
            while time > interval_presence * j:
                pres[j] = 0
                j = j + 1

        # find the time window with highest presence
        sum_per_tw = [
            sum(pres[i:i + presence_per_tw])
            for i in range(0, len(pres), presence_per_tw)
        ]
        max_ind = sum_per_tw.index(max(sum_per_tw))

        # add randomness to selecting time window according to presence
        if rg.random() > 0.9:
            # if random.random() > 0.9:
            sum_per_tw[max_ind] = 0
            max_ind = sum_per_tw.index(max(sum_per_tw))

        time_windows[i, 0] = interval * max_ind
        time_windows[i, 1] = interval * (max_ind + 1)

    customers = [
        Customer(lat[i], lon[i], 0.9, 0.9, presence_list[i], rg)
        for i in range(len(lat))
    ]

    return time_windows, customers
示例#24
0
    def try_crossover(rng: np.random.Generator,
                      *parents_tuple: 'CnnGenome') -> Optional['CnnGenome']:
        """
        Attempts to perform crossover. This could fail in the event that the resulting child genome has no path
        from the input layer to the output layer. This won't happen if the parent genome's accept_rate is 1.0
        """
        parents: List['CnnGenome'] = list(parents_tuple)
        assert len(parents) > 1

        def sort_key(genome: 'CnnGenome') -> float:
            return genome.fitness

        parents = list(sorted(parents, key=sort_key))

        logging.info(f"attempting crossover with {len(parents)} parents")
        for i, parent in enumerate(parents):
            logging.info(   f"parent {i} has {parent.number_enabled_edges()} enabled edges and " + \
                            f"{parent.number_enabled_layers()} enabled layers")

        layer_map: Dict[int, Layer] = {}
        edge_map: Dict[int, Edge] = {}
        epigenetic_weights: Dict[str, Any] = {}
        disabled_edges: Set[int] = set()
        disabled_layers: Set[int] = set()

        def try_add_layer(layer: Layer, enabled: bool = True):
            """
            Add a copy of the supplied layer to the layer map of the new genome we are constructing,
            enabling or disabling it based on the value of enabled
            """
            if layer.layer_innovation_number not in layer_map:
                copy = layer.copy()
                copy.clear_io()
                copy.set_enabled(enabled)
                layer_map[layer.layer_innovation_number] = copy
                if not enabled:
                    disabled_layers.add(layer.layer_innovation_number)
            elif enabled and layer.layer_innovation_number in disabled_layers:
                layer_map[layer.layer_innovation_number].set_enabled(enabled)
                disabled_layers.remove(layer.layer_innovation_number)

        def try_add_edge(edge: Edge, enabled: bool = True):
            """
            Add a copy of the supplied edge to the edge map, enabling or disabling it based on the value
            of enabled
            """
            if  edge.input_layer_in in layer_map and \
                edge.output_layer_in in layer_map:

                if edge.edge_innovation_number not in edge_map:
                    copy = edge.copy(layer_map)
                    copy.set_enabled(enabled)
                    edge_map[edge.edge_innovation_number] = copy
                    if not enabled:
                        disabled_edges.add(edge.edge_innovation_number)

                elif enabled and edge.edge_innovation_number in disabled_edges:
                    edge_map[edge.edge_innovation_number].set_enabled(enabled)
                    disabled_edges.remove(edge.edge_innovation_number)

        for i, parent in enumerate(parents):
            accept_rate = hp.get_crossover_accept_rate(i)

            for layer in parent.layer_map.values():
                sample = rng.random()
                try_add_layer(layer, sample <= accept_rate
                              and layer.is_enabled())

            for edge in parent.edge_map.values():
                sample = rng.random()
                try_add_edge(edge, sample <= accept_rate
                             and layer.is_enabled())

            # We will get the "best" weights here because we sorted by genome fitness - the first things added
            # will have the best fitness
            for name, weights in parent.epigenetic_weights.items():
                if name not in epigenetic_weights:
                    epigenetic_weights[name] = weights

        conv_edges: List[ConvEdge] = []
        output_edges: List[DenseEdge] = []
        for edge in edge_map.values():
            ty = type(edge)
            if issubclass(ty, ConvEdge):
                conv_edges.append(cast(ConvEdge, edge))
            elif ty == DenseEdge:
                output_edges.append(cast(DenseEdge, edge))
            else:
                raise RuntimeError(f"unrecognized edge type '{ty}'")

        number_outputs: int = parents[0].number_outputs
        input_layer: InputLayer = cast(
            InputLayer,
            layer_map[parents[0].input_layer.layer_innovation_number])
        output_layer: OutputLayer = cast(
            OutputLayer,
            layer_map[parents[0].output_layer.layer_innovation_number])

        epigenetic_optimizer_weights = parents[
            0].epigenetic_optimizer_weights.copy()
        epigenetic_optimizer_weights.update(
            parents[1].epigenetic_optimizer_weights)

        # hpc = hp.EvolvableHPConfig(list(map(lambda p: p.hp, parents)), rng)
        hpc = parents[0].hp

        # For now use default fitness, history, and accuracy
        # Maybe we'll want to use the ones from the parent genome
        child = CnnGenome(number_outputs, input_layer, output_layer, layer_map,
                          conv_edges, output_edges, epigenetic_weights,
                          disabled_layers, disabled_edges, hpc)

        if child.path_exists(child.input_layer, child.output_layer, False):
            logging.info("crossover succeeded!")
            logging.info(  f"child has {child.number_enabled_edges()} enabled edges and " + \
                            f"{child.number_enabled_layers()} enabled layers")
            return child
        else:
            logging.info(
                "crossover failed because there was no path from the input layer to the output layer"
            )
            return None
示例#25
0
def uniform_population(rng: np.random.Generator) -> np.array:
    # Distribute population uniformly on a unit square.
    return rng.random((n_individuals, 2))