示例#1
0
def main():
  x = 10
  y = 10
  steps = 10000
  world = np.array([i for i in xrange(625)])
  world.resize((25, 25))
  spInputSize = 21*21
  sp = SpatialPooler(
      inputDimensions=(spInputSize,),
      columnDimensions=(25,),
      potentialRadius=spInputSize,
      numActiveColumnsPerInhArea=1,
      synPermActiveInc=0.1,
      synPermInactiveDec=0.5,
      boostStrength=1.0,
  )
  csFields = generateCenterSurroundFields()
  output = np.zeros((25,), dtype=np.uint32)
  for _ in xrange(steps):
    active = getActive(world, x, y)
    assert len(active) == 25, "{}, {}: {}".format(x, y, active)
    activeInput = np.zeros((625,), dtype=np.uint32)
    for v in active:
      activeInput[v] = 1
    centerSurround = processCenterSurround(csFields, activeInput)
    print centerSurround

    sp.compute(centerSurround, True, output)
    x, y = getNewLocation(x, y, 25, 2, False)

  for i in xrange(25):
    permanence = np.zeros((spInputSize,))
    sp.getPermanence(i, permanence)
    plt.imshow(permanence.reshape((21, 21)), cmap="hot", interpolation="nearest")
    plt.show()
示例#2
0
def main():
    x = 10
    y = 10
    steps = 10000
    history = []
    world = np.array([i for i in xrange(625)])
    world.resize((25, 25))
    sp = SpatialPooler(
        inputDimensions=(625, ),
        columnDimensions=(25, ),
        potentialRadius=625,
        numActiveColumnsPerInhArea=1,
    )
    output = np.zeros((25, ), dtype=np.uint32)
    for _ in xrange(steps):
        active = getActive(world, x, y)
        assert len(active) == 25, "{}, {}: {}".format(x, y, active)
        activeInput = np.zeros((625, ), dtype=np.uint32)
        for v in active:
            activeInput[v] = 1
        history.append(active)
        sp.compute(activeInput, True, output)
        x, y = getNewLocation(x, y, 25, 2, False)

    for i in xrange(25):
        permanence = np.zeros((625, ))
        sp.getPermanence(i, permanence)
        plt.imshow(permanence.reshape((25, 25)),
                   cmap="hot",
                   interpolation="nearest")
        plt.show()
  def test_whether_is_the_same_as_spatial_pooler(self):
    """
    Naive reality check for the encoding function 
    of the lateral pooler implementation.
    """
    n = 1024
    m = 784
    d = 100
    w = 20

    X = np.random.randint(0,2,size=(m,d))
    Y_nup = np.zeros((n,d))
    Y_lat = np.zeros((n,d))

    params_nup = {
        "inputDimensions": [m,1],
        "columnDimensions": [n,1],
        "potentialRadius": n,
        "potentialPct": 1.0,
        "globalInhibition": True,
        "localAreaDensity": -1.0,
        "numActiveColumnsPerInhArea": w,
        "stimulusThreshold": 0,
        "synPermInactiveDec": 0.05,
        "synPermActiveInc"  : 0.1,
        "synPermConnected"  : 0.5,
        "minPctOverlapDutyCycle": 0.001,
        "dutyCyclePeriod": 1000,
        "boostStrength"  : 100.0,
        "seed": 1936 }

    params_lat = params_nup.copy()
    params_lat["lateralLearningRate"]  = 0.0
    params_lat["enforceDesiredWeight"] = False

    sp_nup = SpatialPooler(**params_nup)
    sp_lat = LateralPooler(**params_lat)


    for t in range(d):
      sp_nup.compute(X[:,t], False, Y_nup[:,t])
      sp_lat.compute(X[:,t], False, Y_lat[:,t])
    
    self.assertTrue(np.all(Y_nup == Y_lat), 
      "Produces wrong output even without learning.")


    for t in range(d):
      sp_nup.compute(X[:,t], True, Y_nup[:,t])
      sp_lat.compute(X[:,t], True, Y_lat[:,t])

    self.assertTrue(np.all(Y_nup == Y_lat), 
      "Wrong outputs, something diverges during learning.")

    W_nup = get_W(sp_nup)
    W_lat = get_W(sp_lat)
    self.assertTrue(np.all(W_nup == W_lat), 
      "Wrong synaptic weights, something diverges during learning.")
    def test_whether_is_the_same_as_spatial_pooler(self):
        """
    Naive reality check for the encoding function 
    of the lateral pooler implementation.
    """
        n = 1024
        m = 784
        d = 100
        w = 20

        X = np.random.randint(0, 2, size=(m, d))
        Y_nup = np.zeros((n, d))
        Y_lat = np.zeros((n, d))

        params_nup = {
            "inputDimensions": [m, 1],
            "columnDimensions": [n, 1],
            "potentialRadius": n,
            "potentialPct": 1.0,
            "globalInhibition": True,
            "localAreaDensity": -1.0,
            "numActiveColumnsPerInhArea": w,
            "stimulusThreshold": 0,
            "synPermInactiveDec": 0.05,
            "synPermActiveInc": 0.1,
            "synPermConnected": 0.5,
            "minPctOverlapDutyCycle": 0.001,
            "dutyCyclePeriod": 1000,
            "boostStrength": 100.0,
            "seed": 1936
        }

        params_lat = params_nup.copy()
        params_lat["lateralLearningRate"] = 0.0
        params_lat["enforceDesiredWeight"] = False

        sp_nup = SpatialPooler(**params_nup)
        sp_lat = LateralPooler(**params_lat)

        for t in range(d):
            sp_nup.compute(X[:, t], False, Y_nup[:, t])
            sp_lat.compute(X[:, t], False, Y_lat[:, t])

        self.assertTrue(np.all(Y_nup == Y_lat),
                        "Produces wrong output even without learning.")

        for t in range(d):
            sp_nup.compute(X[:, t], True, Y_nup[:, t])
            sp_lat.compute(X[:, t], True, Y_lat[:, t])

        self.assertTrue(np.all(Y_nup == Y_lat),
                        "Wrong outputs, something diverges during learning.")

        W_nup = get_W(sp_nup)
        W_lat = get_W(sp_lat)
        self.assertTrue(
            np.all(W_nup == W_lat),
            "Wrong synaptic weights, something diverges during learning.")
def main():
  x = 10
  y = 10
  steps = 10000
  ww = 50
  wn = ww ** 2
  rr = 3
  rw = rr * 2 + 1
  nCols = 25
  history = []
  world = np.array([i for i in xrange(wn)])
  world.resize((ww, ww))
  binaryWorld = np.zeros((wn,), dtype=np.uint32)
  binaryWorld[:wn/2] = 1
  np.random.shuffle(binaryWorld)
  sp = SpatialPooler(
      inputDimensions=(rw ** 2,),
      columnDimensions=(nCols,),
      potentialRadius=25,
      potentialPct=1.0,
      numActiveColumnsPerInhArea=1,
      synPermActiveInc=0.01,
      synPermInactiveDec=0.003,
      boostStrength=15.0,
      dutyCyclePeriod=5,
  )
  output = np.zeros((nCols,), dtype=np.uint32)
  for _ in xrange(steps):
    active = getActive(world, ww, x, y, rr)
    assert len(active) == (rw) ** 2, "{}, {}: {}".format(x, y, active)
    active = np.array(list(active))
    activeInput = binaryWorld[active]
    sp.compute(activeInput, True, output)
    x, y = getNewLocation(x, y, ww, rr, False)

  # Check firing fields
  sp.setBoostStrength(0.0)

  firingFields = {}
  for i in xrange(nCols):
    firingFields[i] = np.zeros((ww-rw, ww-rw), dtype=np.uint32)
  for i in xrange(0, ww-rw+1):
    for j in xrange(0, ww-rw+1):
      active = getActive(world, ww, i, j, rr)
      active = np.array(list(active))
      activeInput = binaryWorld[active]
      sp.compute(activeInput, True, output)
      for column in list(output.nonzero()):
        firingFields[column[0]][i:i+rr, j:j+rr] += 1

  for col, ff in firingFields.iteritems():
    plt.imshow(ff, cmap="hot", interpolation="nearest")
    plt.show()
示例#6
0
    def testCompatibilityCppPyDirectCall1D(self):
        """Check SP implementations have same behavior with 1D input."""

        pySp = PySpatialPooler(inputDimensions=[121], columnDimensions=[300])
        cppSp = CPPSpatialPooler(inputDimensions=[121], columnDimensions=[300])

        data = numpy.zeros([121], dtype=uintType)
        for i in range(21):
            data[i] = 1

        nCols = 300
        d1 = numpy.zeros(nCols, dtype=uintType)
        d2 = numpy.zeros(nCols, dtype=uintType)

        pySp.compute(data, True, d1)  # learn
        cppSp.compute(data, True, d2)

        d1 = d1.nonzero()[0].tolist()
        d2 = d2.nonzero()[0].tolist()
        self.assertListEqual(
            d1, d2, "SP outputs are not equal: \n%s \n%s" % (str(d1), str(d2)))
示例#7
0
def runTrial(ww, numColumns, potentialPct, inc, dec, mpo, dutyCycle, boost, steps, rr, spW, stimulusThreshold, connected, stepSize, jumpProb, directionStability):
  ws = ww ** 2
  x = 10
  y = 10
  locationHeatmap = np.zeros((ww, ww))
  history = []
  world = np.array([i for i in xrange(ws)])
  world.resize((ww, ww))
  sp = SpatialPooler(
      inputDimensions=(ws,),
      columnDimensions=(numColumns,),
      potentialRadius=ws,
      potentialPct=potentialPct,
      numActiveColumnsPerInhArea=spW,
      stimulusThreshold=stimulusThreshold,
      synPermActiveInc=inc,
      synPermInactiveDec=dec,
      synPermConnected=connected,
      minPctOverlapDutyCycle=mpo,
      dutyCyclePeriod=dutyCycle,
      boostStrength=boost,
      seed=1936,
      globalInhibition=True,
  )
  output = np.zeros((numColumns,), dtype=np.uint32)
  direction = 0
  for i in xrange(steps):
    locationHeatmap[x][y] += 1
    active = getActive(world, ww, x, y, rr)
    history.append(active)
    activeInput = np.zeros((ws,), dtype=np.uint32)
    for v in active:
      activeInput[v] = 1
    sp.compute(activeInput, True, output)
    x, y, direction = getNewLocation(x, y, ww, rr, wrap=True, locationHeatmap=locationHeatmap, stepSize=stepSize, jumpProb=jumpProb, direction=direction, directionStability=directionStability)

    if (i + 1) % 100 == 0:
      saveImage(history, ws, ww, numColumns, locationHeatmap, potentialPct, inc, dec, mpo, dutyCycle, boost, rr, spW, i+1, sp)

  saveImage(history, ws, ww, numColumns, locationHeatmap, potentialPct, inc, dec, mpo, dutyCycle, boost, rr, spW, steps, sp)
  def testCompatibilityCppPyDirectCall2D(self):
    """Check SP implementations have same behavior with 2D input."""

    pySp = PySpatialPooler(
        inputDimensions=[121, 1], columnDimensions=[30, 30])
    cppSp = CPPSpatialPooler(
        inputDimensions=[121, 1], columnDimensions=[30, 30])

    data = numpy.zeros([121, 1], dtype=uintType)
    for i in xrange(21):
      data[i][0] = 1

    nCols = 900
    d1 = numpy.zeros(nCols, dtype=uintType)
    d2 = numpy.zeros(nCols, dtype=uintType)

    pySp.compute(data, True, d1) # learn
    cppSp.compute(data, True, d2)

    d1 = d1.nonzero()[0].tolist()
    d2 = d2.nonzero()[0].tolist()
    self.assertListEqual(
        d1, d2, "SP outputs are not equal: \n%s \n%s" % (str(d1), str(d2)))
def main():
    x = 10
    y = 10
    steps = 10000
    world = np.array([i for i in xrange(625)])
    world.resize((25, 25))
    spInputSize = 21 * 21
    sp = SpatialPooler(
        inputDimensions=(spInputSize, ),
        columnDimensions=(25, ),
        potentialRadius=spInputSize,
        numActiveColumnsPerInhArea=1,
        synPermActiveInc=0.1,
        synPermInactiveDec=0.5,
        boostStrength=1.0,
    )
    csFields = generateCenterSurroundFields()
    output = np.zeros((25, ), dtype=np.uint32)
    for _ in xrange(steps):
        active = getActive(world, x, y)
        assert len(active) == 25, "{}, {}: {}".format(x, y, active)
        activeInput = np.zeros((625, ), dtype=np.uint32)
        for v in active:
            activeInput[v] = 1
        centerSurround = processCenterSurround(csFields, activeInput)
        print centerSurround

        sp.compute(centerSurround, True, output)
        x, y = getNewLocation(x, y, 25, 2, False)

    for i in xrange(25):
        permanence = np.zeros((spInputSize, ))
        sp.getPermanence(i, permanence)
        plt.imshow(permanence.reshape((21, 21)),
                   cmap="hot",
                   interpolation="nearest")
        plt.show()
示例#10
0
def testSPNew():
  """ New version of the test"""

  elemSize = 400
  numSet = 42

  addNear = True
  numRecords = 1000

  wantPlot = False

  poolPct = 0.5
  itr = 5

  pattern = [60, 1000]
  doLearn = True
  start = 1
  learnIter = 0
  noLearnIter = 0

  numLearns = 0
  numTests = 0


  numIter = 1

  numGroups = 1000


  PLOT_PRECISION = 100.0
  distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))

  inputs = generateRandomInput(numGroups, elemSize, numSet)


  # Setup a SP
  sp = SpatialPooler(
         columnDimensions=(2048, 1),
         inputDimensions=(1, elemSize),
         potentialRadius=elemSize/2,
         numActiveColumnsPerInhArea=40,
         spVerbosity=0,
         stimulusThreshold=0,
         synPermConnected=0.12,
         seed=1,
         potentialPct=poolPct,
         globalInhibition=True
         )

  cleanPlot = False

  for i in xrange(numRecords):
    input1 = getRandomWithMods(inputs, 4)
    if i % 2 == 0:
      input2 = getRandomWithMods(inputs, 4)
    else:
      input2 = input1.copy()
      input2 = modifyBits(input2, 21)

    inDist = (abs(input1-input2) > 0.1)
    intInDist = int(inDist.sum()/2+0.1)
    #print intInDist

    if start == 0:
      doLearn = True
      learnIter += 1
      if learnIter == pattern[start]:
        numLearns += 1
        start = 1
        noLearnIter = 0
    elif start == 1:
      doLearn = False
      noLearnIter += 1
      if noLearnIter == pattern[start]:
        numTests += 1
        start = 0
        learnIter = 0
        cleanPlot = True

    # TODO: See https://github.com/numenta/nupic/issues/2072
    sp.compute(input1, learn=doLearn, activeArray=output1)
    sp.compute(input2, learn=doLearn, activeArray=output2)
    time.sleep(0.001)

    outDist = (abs(output1-output2) > 0.1)
    intOutDist = int(outDist.sum()/2+0.1)

    if not doLearn and intOutDist < 2 and intInDist > 10:
      """
      sp.spVerbosity = 10
      # TODO: See https://github.com/numenta/nupic/issues/2072
      sp.compute(input1, learn=doLearn, activeArray=output1)
      sp.compute(input2, learn=doLearn, activeArray=output2)
      sp.spVerbosity = 0


      print 'Elements has very small SP distance: %d' % intOutDist
      print output1.nonzero()
      print output2.nonzero()
      print sp._firingBoostFactors[output1.nonzero()[0]]
      print sp._synPermBoostFactors[output1.nonzero()[0]]
      print 'Input elements distance is %d' % intInDist
      print input1.nonzero()
      print input2.nonzero()
      sys.stdin.readline()
      """

    if not doLearn:
      x = int(PLOT_PRECISION*intOutDist/40.0)
      y = int(PLOT_PRECISION*intInDist/42.0)
      if distribMatrix[x, y] < 0.1:
        distribMatrix[x, y] = 3
      else:
        if distribMatrix[x, y] < 10:
          distribMatrix[x, y] += 1

    #print i

    # If we don't want a plot, just continue
    if wantPlot and cleanPlot:
      plt.imshow(distribMatrix, origin='lower', interpolation = "nearest")
      plt.ylabel('SP (2048/40) distance in %')
      plt.xlabel('Input (400/42) distance in %')

      title = 'SP distribution'

      #if doLearn:
      #  title += ', leaning ON'
      #else:
      #  title +=  ', learning OFF'

      title += ', learn sets = %d' % numLearns
      title += ', test sets = %d' % numTests
      title += ', iter = %d' % numIter
      title += ', groups = %d' % numGroups
      title += ', Pct =%f' % poolPct

      plt.suptitle(title, fontsize=12)
      #plt.show()

      plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosNew', '%s' % i))

      plt.clf()
      distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
      cleanPlot = False
示例#11
0
def testSP():
  """ Run a SP test
  """

  elemSize = 400
  numSet = 42

  addNear = True
  numRecords = 2

  wantPlot = True

  poolPct = 0.5
  itr = 1
  doLearn = True

  while numRecords < 3:

    # Setup a SP
    sp = SpatialPooler(
           columnDimensions=(2048, 1),
           inputDimensions=(1, elemSize),
           potentialRadius=elemSize/2,
           numActiveColumnsPerInhArea=40,
           spVerbosity=0,
           stimulusThreshold=0,
           seed=1,
           potentialPct=poolPct,
           globalInhibition=True
           )

    # Generate inputs using rand()
    inputs = generateRandomInput(numRecords, elemSize, numSet)
    if addNear:
      # Append similar entries (distance of 1)
      appendInputWithNSimilarValues(inputs, 42)

    inputSize = len(inputs)
    print 'Num random records = %d, inputs to process %d' % (numRecords, inputSize)

    # Run a number of iterations, with learning on or off,
    # retrieve results from the last iteration only
    outputs = np.zeros((inputSize,2048))

    numIter = 1
    if doLearn:
      numIter = itr

    for iter in xrange(numIter):
      for i in xrange(inputSize):
        time.sleep(0.001)
        if iter == numIter - 1:
          # TODO: See https://github.com/numenta/nupic/issues/2072
          sp.compute(inputs[i], learn=doLearn, activeArray=outputs[i])
          #print outputs[i].sum(), outputs[i]
        else:
          # TODO: See https://github.com/numenta/nupic/issues/2072
          output = np.zeros(2048)
          sp.compute(inputs[i], learn=doLearn, activeArray=output)

    # Build a plot from the generated input and output and display it
    distribMatrix = generatePlot(outputs, inputs)

    # If we don't want a plot, just continue
    if wantPlot:
      plt.imshow(distribMatrix, origin='lower', interpolation = "nearest")
      plt.ylabel('SP (2048/40) distance in %')
      plt.xlabel('Input (400/42) distance in %')

      title = 'SP distribution'
      if doLearn:
        title += ', leaning ON'
      else:
        title +=  ', learning OFF'

      title += ', inputs = %d' % len(inputs)
      title += ', iterations = %d' % numIter
      title += ', poolPct =%f' % poolPct

      plt.suptitle(title, fontsize=12)
      plt.show()
      #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videos5', '%s' % numRecords))
      #plt.clf()

    numRecords += 1

  return
示例#12
0
# -------
# A column connects to a subset of the input vector (specified
# by both the potentialRadius and potentialPct). The overlap score
# for a column is the number of connections to the input that become
# active when presented with a vector. When learning is 'on' in the SP,
# the active connections are reinforced, whereas those inactive are
# depressed (according to parameters synPermActiveInc and synPermInactiveDec.
# In order for the SP to create a sparse representation of the input, it
# will select a small percentage (usually 2%) of its most active columns,
# ie. columns with the largest overlap score.
# In this first part, we will create a histogram showing the overlap scores
# of the Spatial Pooler (SP) after feeding it with a random binary
# input. As well, the histogram will show the scores of those columns
# that are chosen to build the sparse representation of the input.

sp.compute(inputArray, False, activeCols)
overlaps = sp.getOverlaps()
activeColsScores = []
for i in activeCols.nonzero():
  activeColsScores.append(overlaps[i])

print("")
print("---------------------------------")
print("Figure 1 shows an histogram of the overlap scores")
print("from all the columns in the spatial pooler, as well as the")
print("overlap scores of those columns that were selected to build a")
print("sparse representation of the input (shown in green).")
print("The SP chooses 2% of the columns with the largest overlap score")
print("to make such sparse representation.")
print("---------------------------------")
print("")
示例#13
0
def testSP():
    """ Run a SP test
  """

    elemSize = 400
    numSet = 42

    addNear = True
    numRecords = 2

    wantPlot = True

    poolPct = 0.5
    itr = 1
    doLearn = True

    while numRecords < 3:

        # Setup a SP
        sp = SpatialPooler(columnDimensions=(2048, 1),
                           inputDimensions=(1, elemSize),
                           potentialRadius=elemSize / 2,
                           numActiveColumnsPerInhArea=40,
                           spVerbosity=0,
                           stimulusThreshold=0,
                           seed=1,
                           potentialPct=poolPct,
                           globalInhibition=True)

        # Generate inputs using rand()
        inputs = generateRandomInput(numRecords, elemSize, numSet)
        if addNear:
            # Append similar entries (distance of 1)
            appendInputWithNSimilarValues(inputs, 42)

        inputSize = len(inputs)
        print('Num random records = %d, inputs to process %d' %
              (numRecords, inputSize))

        # Run a number of iterations, with learning on or off,
        # retrieve results from the last iteration only
        outputs = np.zeros((inputSize, 2048))

        numIter = 1
        if doLearn:
            numIter = itr

        for iter in range(numIter):
            for i in range(inputSize):
                time.sleep(0.001)
                if iter == numIter - 1:
                    # TODO: See https://github.com/numenta/nupic/issues/2072
                    sp.compute(inputs[i],
                               learn=doLearn,
                               activeArray=outputs[i])
                    #print outputs[i].sum(), outputs[i]
                else:
                    # TODO: See https://github.com/numenta/nupic/issues/2072
                    output = np.zeros(2048)
                    sp.compute(inputs[i], learn=doLearn, activeArray=output)

        # Build a plot from the generated input and output and display it
        distribMatrix = generatePlot(outputs, inputs)

        # If we don't want a plot, just continue
        if wantPlot:
            plt.imshow(distribMatrix, origin='lower', interpolation="nearest")
            plt.ylabel('SP (2048/40) distance in %')
            plt.xlabel('Input (400/42) distance in %')

            title = 'SP distribution'
            if doLearn:
                title += ', leaning ON'
            else:
                title += ', learning OFF'

            title += ', inputs = %d' % len(inputs)
            title += ', iterations = %d' % numIter
            title += ', poolPct =%f' % poolPct

            plt.suptitle(title, fontsize=12)
            plt.show()
            #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videos5', '%s' % numRecords))
            #plt.clf()

        numRecords += 1

    return
示例#14
0
  def _runLearnInference(self,
                         n=30,
                         w=15,
                         columnDimensions=2048,
                         numActiveColumnsPerInhArea=40,
                         spSeed=1951,
                         spVerbosity=0,
                         numTrainingRecords=100,
                         seed=42):
    # Instantiate two identical spatial pooler. One will be used only for
    # learning. The other will be trained with identical records, but with
    # random inference calls thrown in
    spLearnOnly = SpatialPooler(
        columnDimensions=(columnDimensions, 1),
        inputDimensions=(1, n),
        potentialRadius=n/2,
        numActiveColumnsPerInhArea=numActiveColumnsPerInhArea,
        spVerbosity=spVerbosity,
        seed=spSeed,
        synPermInactiveDec=0.01,
        synPermActiveInc=0.2,
        synPermConnected=0.11,)

    spLearnInfer = SpatialPooler(
        columnDimensions=(columnDimensions, 1),
        inputDimensions=(1, n),
        potentialRadius=n/2,
        numActiveColumnsPerInhArea=numActiveColumnsPerInhArea,
        spVerbosity=spVerbosity,
        seed=spSeed,
        synPermInactiveDec=0.01,
        synPermActiveInc=0.2,
        synPermConnected=0.11,)

    random.seed(seed)
    np.random.seed(seed)

    # Build up training set with numTrainingRecords patterns
    inputs = []         # holds post-encoded input patterns
    for i in xrange(numTrainingRecords):
      inputVector = np.zeros(n, dtype=realDType)
      inputVector [random.sample(xrange(n), w)] = 1
      inputs.append(inputVector)

    # Train each SP with identical inputs
    startTime = time.time()

    random.seed(seed)
    np.random.seed(seed)
    for i in xrange(numTrainingRecords):
      if spVerbosity > 0:
        print "Input #%d" % i
      # TODO: See https://github.com/numenta/nupic/issues/2072
      encodedInput = inputs[i]
      decodedOutput = np.zeros(columnDimensions)
      spLearnOnly.compute(encodedInput, learn=True, activeArray=decodedOutput)

    random.seed(seed)
    np.random.seed(seed)
    for i in xrange(numTrainingRecords):
      if spVerbosity > 0:
        print "Input #%d" % i
      # TODO: See https://github.com/numenta/nupic/issues/2072
      encodedInput = inputs[i]
      decodedOutput = np.zeros(columnDimensions)
      spLearnInfer.compute(encodedInput, learn=True, activeArray=decodedOutput)

    print "\nElapsed time: %.2f seconds\n" % (time.time() - startTime)

    # Test that both SP"s are identical by checking learning stats
    # A more in depth test would check all the coincidences, duty cycles, etc.
    # ala tpDiff
    # Edit: spDiff has been written as an in depth tester of the spatial pooler
    learnOnlyStats = spLearnOnly.getLearningStats()
    learnInferStats = spLearnInfer.getLearningStats()

    success = True
    # Check that the two spatial poolers are equivalent after the same training.
    success = success and spDiff(spLearnInfer, spLearnOnly)
    self.assertTrue(success)
    # Make sure that the pickled and loaded SPs are equivalent.
    spPickle = pickle.dumps(spLearnOnly, protocol=0)
    spLearnOnlyLoaded = pickle.loads(spPickle)
    success = success and spDiff(spLearnOnly, spLearnOnlyLoaded)
    self.assertTrue(success)
    for k in learnOnlyStats.keys():
      if learnOnlyStats[k] != learnInferStats[k]:
        success = False
        print "Stat", k, "is different:", learnOnlyStats[k], learnInferStats[k]

    self.assertTrue(success)
    if success:
      print "Test succeeded"
示例#15
0
# -------
# A column connects to a subset of the input vector (specified
# by both the potentialRadius and potentialPct). The overlap score
# for a column is the number of connections to the input that become
# active when presented with a vector. When learning is 'on' in the SP,
# the active connections are reinforced, whereas those inactive are
# depressed (according to parameters synPermActiveInc and synPermInactiveDec.
# In order for the SP to create a sparse representation of the input, it
# will select a small percentage (usually 2%) of its most active columns,
# ie. columns with the largest overlap score.
# In this first part, we will create a histogram showing the overlap scores
# of the Spatial Pooler (SP) after feeding it with a random binary
# input. As well, the histogram will show the scores of those columns
# that are chosen to build the sparse representation of the input.

sp.compute(inputArray, False, activeCols)
overlaps = sp.getOverlaps()
activeColsScores = []
for i in activeCols.nonzero():
  activeColsScores.append(overlaps[i])

print ""
print "---------------------------------"
print "Figure 1 shows an histogram of the overlap scores"
print "from all the columns in the spatial pooler, as well as the"
print "overlap scores of those columns that were selected to build a"
print "sparse representation of the input (shown in green)."
print "The SP chooses 2% of the columns with the largest overlap score"
print "to make such sparse representation."
print "---------------------------------"
print ""
示例#16
0
        # fill encodings
        timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
        weekendEncoder.encodeIntoArray(dateString, weekendBits)
        consumeEncoder.encodeIntoArray(consumption, consumptionBits)
        encoding = numpy.concatenate(
            [timeOfDayBits, weekendBits, consumptionBits])

        #ONE = {'id': count, 'input': consumption, 'bucket': bucketIdx,
        #       'output': consumptionBits.tolist()}
        #print ONE
        #REZ.append(ONE)

        # spatial pooling
        activeColumns = numpy.zeros(COL_WIDTH, numpy.int8)
        sp.compute(encoding, True, activeColumns)
        activeColumnIndices = numpy.nonzero(activeColumns)[0]

        # temporal memory
        tm.compute(activeColumnIndices, learn=True)
        activeCells = tm.getActiveCells()

        # classification
        bucketIdx = consumeEncoder.getBucketIndices(consumption)[0]
        ###
        #hamming[bucketIdx] = consumptionBits
        ###
        classifierResult = classifier.compute(recordNum=count,
                                              patternNZ=activeCells,
                                              classification={
                                                  "bucketIdx": bucketIdx,
示例#17
0
activeColumns2 = np.zeros(SpatialPoolerWidth)
activeColumns3 = np.zeros(SpatialPoolerWidth)
activeColumns4 = np.zeros(SpatialPoolerWidth)


# Compare overlap of the input SDRs
#dotproduct = numpy.dot(Graph1Binary, Graph2Binary)/(numpy.linalg.norm#(Graph1Binary)*numpy.linalg.norm(Graph2Binary))

# Find percent overlap of old vectors.

#print('Percent Overlap of the Input Vectors: ' + str(round(dotproduct,5)*100) +'%' )

# Run the spatial pooling function for Triangle Square Circle

for i in range(10):
	sp.compute(TCSGraph0Binary, True, activeColumns1)
	activeColumnIndices1 = np.nonzero(activeColumns1)[0]

	sp.compute(TCSGraph10Binary, True, activeColumns2)	
	activeColumnIndices2 = np.nonzero(activeColumns2)[0]

print('Spatial Pooler Output for Triangle Square Circle: ' + str(activeColumnIndices2))


# Run the spatial pooling function for the Circle Square

for m in range(20):
	sp.compute(CSGraphBinary, True, activeColumns3)
	activeColumnIndices3 = np.nonzero(activeColumns3)[0]

print('Spatial Pooler Output for Circle Square:' + str(activeColumnIndices3))
示例#18
0
def HTM_AD(
        Data='Test',
        vars={'value': ['num']},
        prec_param=5,
        pooler_out=2024,  # Number of columns of the pooler output
        cell_col=5,  # HTM cells per column
        W=72,  # Window parameter
        W_prim=5,  # Local window for anomaly detection likelihood
        eps=1e-6,  # to Avoid by zero divisions
        athreshold=0.95):
    """
    This function performs HTM based anomaly detection on a time series provided
    :param Data:
    :param vars: Possible values: num, tod, weekend
    :param prec_param: A parameter that defines how much precision the number encoder has
        The encoder precision depends on the variability of the data,
        The real precision is computed taking into account both the precision parameter and data std
        A high precision might mean a high error at predicting the variable value in noisy variables
    :param pooler_out: Number of columns of the pooler output
    :param cell_col: HTM cells per column
    :param W: Window parameter
    :param W_prim: Local window for anomaly detection likelihood
    :param eps: to Avoid by zero divisions
    :param athreshold: To classify based on anomaly likelihood whether there is an anomaly or not
    :return: The Data + 3 columns
        Anomaly: indicates the error of within the value predicted by the HTM network
        Anomaly_likelihood: indicates the likelihood of the data into being anomalous
        Anomaly_flag: classifies the data in anomalous vs non anomalous
    """

    if Data == 'Test':  # If there is not data available, simply loads the temperature benchmark dataset
        # Import data
        Data = pd.read_csv('anomaly_API/Data/sample.csv',
                           parse_dates=True,
                           index_col='timestamp')
        Data = Data.resample('H').bfill().interpolate()

    TODE = DateEncoder(timeOfDay=(21, 1))
    WENDE = DateEncoder(weekend=21)

    var_encoders = set()
    # Spatial Pooler Parameters
    for x in vars:
        for y in vars[x]:
            if y == 'num':
                exec(
                    "RDSE_" + x +
                    " = RandomDistributedScalarEncoder(resolution=Data['" + x +
                    "'].std()/prec_param)", locals(), globals())
                var_encoders.add(Encoder(x, ["RDSE_" + x]))
            elif y == 'weekend':
                var_encoders.add(Encoder(x, ["WENDE"]))
            elif y == 'tod':
                var_encoders.add(Encoder(x, ["TODE"]))
            else:
                return {"error": "Variable encoder type is not recognized "}

    encoder_width = 0  # Computes encoder width
    for x in var_encoders:
        for y in x.encoders:
            exec("s = " + y + ".getWidth()", locals(), globals())
            encoder_width += s

    SP = SpatialPooler(
        inputDimensions=encoder_width,
        columnDimensions=pooler_out,
        potentialPct=0.8,
        globalInhibition=True,
        numActiveColumnsPerInhArea=pooler_out //
        50,  # Gets 2% of the total area
        boostStrength=1.0,
        wrapAround=False)
    TM = TemporalMemory(columnDimensions=(pooler_out, ),
                        cellsPerColumn=cell_col)

    Data['Anomaly'] = 0.0
    Data['Anomaly_Likelihood'] = 0.0

    # Train Spatial Pooler
    print("Spatial pooler learning")

    start = time.time()

    active_columns = np.zeros(pooler_out)

    for x in range(len(Data)):
        encoder = multiencode(var_encoders, Data, x)
        SP.compute(encoder, True, active_columns)

    end = time.time()
    print(end - start)

    # Temporal pooler
    print("Temporal pooler learning")

    start = time.time()

    A_score = np.zeros(len(Data))
    for x in range(len(Data)):
        encoder = multiencode(var_encoders, Data, x)
        SP.compute(encoder, False, active_columns)
        col_index = active_columns.nonzero()[0]
        TM.compute(col_index, learn=True)
        if x > 0:
            inter = set(col_index).intersection(Prev_pred_col)
            inter_l = len(inter)
            active_l = len(col_index)
            A_score[x] = 1 - (inter_l / active_l)
            Data.iat[x, -2] = A_score[x]
        Prev_pred_col = list(
            set(x // cell_col for x in TM.getPredictiveCells()))

    end = time.time()
    print(end - start)

    AL_score = np.zeros(len(Data))
    # Computes the likelihood of the anomaly
    for x in range(len(Data)):
        if x > 0:
            W_vec = A_score[max(0, x - W):x]
            W_prim_vec = A_score[max(0, x - W_prim):x]
            AL_score[x] = 1 - 2 * norm.sf(
                abs(np.mean(W_vec) - np.mean(W_prim_vec)) /
                max(np.std(W_vec), eps))
            Data.iat[x, -1] = AL_score[x]

    Data['Anomaly_flag'] = athreshold < Data['Anomaly_Likelihood']

    return Data
示例#19
0
def testSPFile():
    """ Run test on the data file - the file has records previously encoded.
  """

    spSize = 2048
    spSet = 40

    poolPct = 0.5

    pattern = [50, 1000]
    doLearn = True

    PLOT_PRECISION = 100.0
    distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))

    inputs = []

    #file = open('~/Desktop/ExperimentResults/sampleArtificial.csv', 'rb')
    #elemSize = 400
    #numSet = 42

    #file = open('~/Desktop/ExperimentResults/sampleDataBasilOneField.csv', 'rb')
    #elemSize = 499
    #numSet = 7

    outdir = '~/Desktop/ExperimentResults/Basil100x21'
    inputFile = outdir + '.csv'
    file = open(inputFile, 'rb')

    elemSize = 100
    numSet = 21

    reader = csv.reader(file)

    for row in reader:
        input = np.array(list(map(float, row)), dtype=realDType)
        if len(input.nonzero()[0]) != numSet:
            continue

        inputs.append(input.copy())

    file.close()

    # Setup a SP
    sp = SpatialPooler(columnDimensions=(spSize, 1),
                       inputDimensions=(1, elemSize),
                       potentialRadius=elemSize / 2,
                       numActiveColumnsPerInhArea=spSet,
                       spVerbosity=0,
                       stimulusThreshold=0,
                       synPermConnected=0.10,
                       seed=1,
                       potentialPct=poolPct,
                       globalInhibition=True)

    cleanPlot = False

    doLearn = False

    print('Finished reading file, inputs/outputs to process =', len(inputs))

    size = len(inputs)

    for iter in range(100):

        print('Iteration', iter)

        # Learn
        if iter != 0:
            for learnRecs in range(pattern[0]):

                # TODO: See https://github.com/numenta/nupic/issues/2072
                ind = np.random.random_integers(0, size - 1, 1)[0]
                sp.compute(inputs[ind], learn=True, activeArray=outputs[ind])

        # Test
        for _ in range(pattern[1]):
            rand1 = np.random.random_integers(0, size - 1, 1)[0]
            rand2 = np.random.random_integers(0, size - 1, 1)[0]

            sp.compute(inputs[rand1], learn=False, activeArray=output1)
            sp.compute(inputs[rand2], learn=False, activeArray=output2)

            outDist = (abs(output1 - output2) > 0.1)
            intOutDist = int(outDist.sum() / 2 + 0.1)

            inDist = (abs(inputs[rand1] - inputs[rand2]) > 0.1)
            intInDist = int(inDist.sum() / 2 + 0.1)

            if intInDist != numSet or intOutDist != spSet:
                print(rand1, rand2, '-', intInDist, intOutDist)

            x = int(PLOT_PRECISION * intOutDist / spSet)
            y = int(PLOT_PRECISION * intInDist / numSet)
            if distribMatrix[x, y] < 0.1:
                distribMatrix[x, y] = 3
            else:
                if distribMatrix[x, y] < 10:
                    distribMatrix[x, y] += 1

        if True:
            plt.imshow(distribMatrix, origin='lower', interpolation="nearest")
            plt.ylabel('SP (%d/%d) distance in pct' % (spSize, spSet))
            plt.xlabel('Input (%d/%d) distance in pct' % (elemSize, numSet))

            title = 'SP distribution'
            title += ', iter = %d' % iter
            title += ', Pct =%f' % poolPct

            plt.suptitle(title, fontsize=12)

            #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosArtData', '%s' % iter))
            plt.savefig(os.path.join(outdir, '%s' % iter))

            plt.clf()
            distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))
示例#20
0
def testSPNew():
    """ New version of the test"""

    elemSize = 400
    numSet = 42

    addNear = True
    numRecords = 1000

    wantPlot = False

    poolPct = 0.5
    itr = 5

    pattern = [60, 1000]
    doLearn = True
    start = 1
    learnIter = 0
    noLearnIter = 0

    numLearns = 0
    numTests = 0

    numIter = 1

    numGroups = 1000

    PLOT_PRECISION = 100.0
    distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))

    inputs = generateRandomInput(numGroups, elemSize, numSet)

    # Setup a SP
    sp = SpatialPooler(columnDimensions=(2048, 1),
                       inputDimensions=(1, elemSize),
                       potentialRadius=elemSize / 2,
                       numActiveColumnsPerInhArea=40,
                       spVerbosity=0,
                       stimulusThreshold=0,
                       synPermConnected=0.12,
                       seed=1,
                       potentialPct=poolPct,
                       globalInhibition=True)

    cleanPlot = False

    for i in range(numRecords):
        input1 = getRandomWithMods(inputs, 4)
        if i % 2 == 0:
            input2 = getRandomWithMods(inputs, 4)
        else:
            input2 = input1.copy()
            input2 = modifyBits(input2, 21)

        inDist = (abs(input1 - input2) > 0.1)
        intInDist = int(inDist.sum() / 2 + 0.1)
        #print intInDist

        if start == 0:
            doLearn = True
            learnIter += 1
            if learnIter == pattern[start]:
                numLearns += 1
                start = 1
                noLearnIter = 0
        elif start == 1:
            doLearn = False
            noLearnIter += 1
            if noLearnIter == pattern[start]:
                numTests += 1
                start = 0
                learnIter = 0
                cleanPlot = True

        # TODO: See https://github.com/numenta/nupic/issues/2072
        sp.compute(input1, learn=doLearn, activeArray=output1)
        sp.compute(input2, learn=doLearn, activeArray=output2)
        time.sleep(0.001)

        outDist = (abs(output1 - output2) > 0.1)
        intOutDist = int(outDist.sum() / 2 + 0.1)

        if not doLearn and intOutDist < 2 and intInDist > 10:
          """
      sp.spVerbosity = 10
      # TODO: See https://github.com/numenta/nupic/issues/2072
      sp.compute(input1, learn=doLearn, activeArray=output1)
      sp.compute(input2, learn=doLearn, activeArray=output2)
      sp.spVerbosity = 0


      print 'Elements has very small SP distance: %d' % intOutDist
      print output1.nonzero()
      print output2.nonzero()
      print sp._firingBoostFactors[output1.nonzero()[0]]
      print sp._synPermBoostFactors[output1.nonzero()[0]]
      print 'Input elements distance is %d' % intInDist
      print input1.nonzero()
      print input2.nonzero()
      sys.stdin.readline()
      """

        if not doLearn:
            x = int(PLOT_PRECISION * intOutDist / 40.0)
            y = int(PLOT_PRECISION * intInDist / 42.0)
            if distribMatrix[x, y] < 0.1:
                distribMatrix[x, y] = 3
            else:
                if distribMatrix[x, y] < 10:
                    distribMatrix[x, y] += 1

        #print i

        # If we don't want a plot, just continue
        if wantPlot and cleanPlot:
            plt.imshow(distribMatrix, origin='lower', interpolation="nearest")
            plt.ylabel('SP (2048/40) distance in %')
            plt.xlabel('Input (400/42) distance in %')

            title = 'SP distribution'

            #if doLearn:
            #  title += ', leaning ON'
            #else:
            #  title +=  ', learning OFF'

            title += ', learn sets = %d' % numLearns
            title += ', test sets = %d' % numTests
            title += ', iter = %d' % numIter
            title += ', groups = %d' % numGroups
            title += ', Pct =%f' % poolPct

            plt.suptitle(title, fontsize=12)
            #plt.show()

            plt.savefig(
                os.path.join('~/Desktop/ExperimentResults/videosNew',
                             '%s' % i))

            plt.clf()
            distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))
            cleanPlot = False
示例#21
0
def testSPFile():
  """ Run test on the data file - the file has records previously encoded.
  """

  spSize = 2048
  spSet = 40

  poolPct = 0.5

  pattern = [50, 1000]
  doLearn = True

  PLOT_PRECISION = 100.0
  distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))

  inputs = []


  #file = open('~/Desktop/ExperimentResults/sampleArtificial.csv', 'rb')
  #elemSize = 400
  #numSet = 42

  #file = open('~/Desktop/ExperimentResults/sampleDataBasilOneField.csv', 'rb')
  #elemSize = 499
  #numSet = 7

  outdir = '~/Desktop/ExperimentResults/Basil100x21'
  inputFile = outdir+'.csv'
  file = open(inputFile, 'rb')

  elemSize = 100
  numSet = 21

  reader = csv.reader(file)

  for row in reader:
    input = np.array(map(float, row), dtype=realDType)
    if len(input.nonzero()[0]) != numSet:
      continue

    inputs.append(input.copy())

  file.close()

  # Setup a SP
  sp = SpatialPooler(
         columnDimensions=(spSize, 1),
         inputDimensions=(1, elemSize),
         potentialRadius=elemSize/2,
         numActiveColumnsPerInhArea=spSet,
         spVerbosity=0,
         stimulusThreshold=0,
         synPermConnected=0.10,
         seed=1,
         potentialPct=poolPct,
         globalInhibition=True
         )

  cleanPlot = False


  doLearn = False

  print 'Finished reading file, inputs/outputs to process =', len(inputs)

  size = len(inputs)

  for iter in xrange(100):

    print 'Iteration', iter

    # Learn
    if iter != 0:
      for learnRecs in xrange(pattern[0]):

        # TODO: See https://github.com/numenta/nupic/issues/2072
        ind = np.random.random_integers(0, size-1, 1)[0]
        sp.compute(inputs[ind], learn=True, activeArray=outputs[ind])

    # Test
    for _ in xrange(pattern[1]):
      rand1 = np.random.random_integers(0, size-1, 1)[0]
      rand2 = np.random.random_integers(0, size-1, 1)[0]

      sp.compute(inputs[rand1], learn=False, activeArray=output1)
      sp.compute(inputs[rand2], learn=False, activeArray=output2)

      outDist = (abs(output1-output2) > 0.1)
      intOutDist = int(outDist.sum()/2+0.1)

      inDist = (abs(inputs[rand1]-inputs[rand2]) > 0.1)
      intInDist = int(inDist.sum()/2+0.1)

      if intInDist != numSet or intOutDist != spSet:
        print rand1, rand2, '-', intInDist, intOutDist

      x = int(PLOT_PRECISION*intOutDist/spSet)
      y = int(PLOT_PRECISION*intInDist/numSet)
      if distribMatrix[x, y] < 0.1:
        distribMatrix[x, y] = 3
      else:
        if distribMatrix[x, y] < 10:
          distribMatrix[x, y] += 1

    if True:
      plt.imshow(distribMatrix, origin='lower', interpolation = "nearest")
      plt.ylabel('SP (%d/%d) distance in pct' % (spSize, spSet))
      plt.xlabel('Input (%d/%d) distance in pct' % (elemSize, numSet))

      title = 'SP distribution'
      title += ', iter = %d' % iter
      title += ', Pct =%f' % poolPct

      plt.suptitle(title, fontsize=12)

      #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosArtData', '%s' % iter))
      plt.savefig(os.path.join(outdir, '%s' % iter))

      plt.clf()
      distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
示例#22
0
# Array which contains the output of the spatial pooler

activeColumns1 = numpy.zeros(SpatialPoolerWidth)
activeColumns2 = numpy.zeros(SpatialPoolerWidth)

dotproduct = numpy.dot(Graph1Binary, Graph2Binary) / (
    numpy.linalg.norm(Graph1Binary) * numpy.linalg.norm(Graph2Binary))

# Find percent overlap of old vectors.

print('Percent Overlap of the Input Vectors: ' +
      str(round(dotproduct, 5) * 100) + '%')

# Run the spatial pooling function

sp.compute(Graph1Binary, True, activeColumns1)
activeColumnIndices1 = numpy.nonzero(activeColumns1)[0]
print('Spatial Pooler Output for Graph 1: ' + str(activeColumnIndices1))

sp.compute(Graph2Binary, True, activeColumns2)
activeColumnIndices2 = numpy.nonzero(activeColumns2)[0]
print('Spatial Pooler Output for Graph 2:' + str(activeColumnIndices2))

# find percent overlap of spatially pooled vectors.

dotproduct = numpy.dot(activeColumns1, activeColumns2) / (
    numpy.linalg.norm(activeColumns1) * numpy.linalg.norm(activeColumns2))

print('Percent Overlap of the SP Output Vectors: ' +
      str(round(dotproduct, 5) * 100) + '%')
示例#23
0
    boostStrength=3.0,
    # Random number generator seed.
    seed=1956,
    # Determines if inputs at the beginning and end of an input dimension should
    # be considered neighbors when mapping columns to inputs.
    wrapAround=False)

# Array which contains the output of the spatial pooler for layer 1
activeColumns = np.zeros(SpatialPoolerWidth1)

#Push all image SDRs through the SP layer 1
SPLayer1Out = np.array([])
tempList = []
#print('L1 TriSqrCrcl Out: ')
for i in range(numInputs):
    sp.compute(arrayOfSDRs[i, :], True, activeColumns)
    tempList.append(activeColumns)
    #Prepare the output for printing
    activeColumnIndices = np.nonzero(activeColumns)
    #print(activeColumnIndices[0])
SPLayer1Out = np.stack(tempList, axis=0)

#=== Layer 2 SP Setup

EncodingWidth, SpatialPoolerWidth2 = SpatialPoolerWidth1, 400

sp = SpatialPooler(
    # How large the input encoding will be.
    inputDimensions=(EncodingWidth),
    # How many mini-columns will be in the Spatial Pooler.
    columnDimensions=(SpatialPoolerWidth2),
示例#24
0
def main(argv):
  args, _ = parse_argv()
  data_set        = args.data_set
  num_data_points = args.num_data_points
  sp_type         = args.pooler_type
  num_epochs      = args.num_epochs
  batch_size      = args.batch_size
  experiment_id   = args.experiment_id
  seed            = args.seed


  the_scripts_path = os.path.dirname(os.path.realpath(__file__)) # script directory

  sp_params_dict  = json.load(open(the_scripts_path + "/params.json"))
  if args.sp_params is not None:
    sp_params       = sp_params_dict[sp_type][args.sp_params]
  else:
    sp_params       = sp_params_dict[sp_type][data_set]
  sp_params["seed"] = seed

  if experiment_id is None:
    experiment_id = random_id(5)

  path = the_scripts_path + "/../results/{}_pooler_{}_{}/".format(sp_type, data_set,experiment_id)
  os.makedirs(os.path.dirname(path))

  print(
    "Experiment directory:\n\"{}\"\n"
    .format(path))

  X, _, X_test, _ = load_data(data_set, num_inputs = num_data_points) 

  n, m = get_shape(sp_params)
  X    = X[:,:num_data_points]
  d    = X.shape[1]
  

  results = {
    "inputs"      : [],
    "outputs"     : [],
    "feedforward" : []}


  ####################################################
  # 
  #               Old Spatial Pooler
  # 
  ####################################################
  if sp_type == "ordinary":
    
    pooler = OldSpatialPooler(**sp_params)

    print(
      "Training ordinary pooler:\n")

    # "Fit" the model to the training data
    for epoch in range(num_epochs):
      Y = np.zeros((n,d))

      perm = np.random.permutation(d)

      for t in range(d):

        sys.stdout.flush()
        sys.stdout.write(
          "\r{}/{}  {}/{}"
            .format(num_epochs, epoch + 1, d, t + 1))

        x = X[:,perm[t]]
        y = Y[:, t]
        pooler.compute(x, True, y)

      results["inputs"].append(X)
      results["outputs"].append(Y)
      results["feedforward"].append(get_permanence_vals(pooler)) 
      
  
  ####################################################
  # 
  #             New Spatial Pooler with 
  #     learned lateral inhibitory connections
  # 
  #####################################################
  elif sp_type == "lateral":

    pooler = LateralPooler(**sp_params)

    sys.stdout.write(
      "Training dynamic lateral pooler:\n")

    collect_feedforward = ModelInspector(lambda pooler: pooler.feedforward.copy(), on_batch = False )
    # collect_lateral     = ModelInspector(lambda pooler: pooler.inhibitory.copy(),  on_batch = False )
    training_log        = OutputCollector()
    print_training_status = Logger()

    # "Fit" the model to the training datasets
    pooler.fit(X, batch_size=batch_size, num_epochs=num_epochs, initial_epoch=0, callbacks=[collect_feedforward, training_log, print_training_status])

    results["inputs"]      = training_log.get_inputs()
    results["outputs"]     = training_log.get_outputs()
    results["feedforward"] = collect_feedforward.get_results()
    # results["lateral"]     = collect_lateral.get_results() 


  dump_dict(path, sp_params)
  dump_results(path, results)

  print(
    "\nDone.\n")
def runHotgym(numRecords):
    with open(_PARAMS_PATH, "r") as f:
        modelParams = yaml.safe_load(f)["modelParams"]
        enParams = modelParams["sensorParams"]["encoders"]
        spParams = modelParams["spParams"]
        tmParams = modelParams["tmParams"]

    timeOfDayEncoder = DateEncoder(
        timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
    weekendEncoder = DateEncoder(
        weekend=enParams["timestamp_weekend"]["weekend"])
    CtEncoder = RandomDistributedScalarEncoder(enParams["Ct"]["resolution"])
    ZIP_10467Encoder = RandomDistributedScalarEncoder(
        enParams["ZIP_10467"]["resolution"])
    #  ZIP_10462Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10462"]["resolution"])
    #  ZIP_10475Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10475"]["resolution"])
    #  ZIP_10466Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10466"]["resolution"])
    #  ZIP_10469Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10469"]["resolution"])
    #  DEPT_11Encoder = RandomDistributedScalarEncoder(enParams["DEPT_11"]["resolution"])
    #  DEPT_24Encoder = RandomDistributedScalarEncoder(enParams["DEPT_24"]["resolution"])
    #  DEPT_41Encoder = RandomDistributedScalarEncoder(enParams["DEPT_41"]["resolution"])
    #  DEPT_34Encoder = RandomDistributedScalarEncoder(enParams["DEPT_34"]["resolution"])
    #  DEPT_31Encoder = RandomDistributedScalarEncoder(enParams["DEPT_31"]["resolution"])
    #  DEPT_60Encoder = RandomDistributedScalarEncoder(enParams["DEPT_60"]["resolution"])
    #  AGE_0_9Encoder = RandomDistributedScalarEncoder(enParams["AGE_0_9"]["resolution"])
    #  AGE_10_19Encoder = RandomDistributedScalarEncoder(enParams["AGE_10_19"]["resolution"])
    #  AGE_20_29Encoder = RandomDistributedScalarEncoder(enParams["AGE_20_29"]["resolution"])
    #  AGE_30_39Encoder = RandomDistributedScalarEncoder(enParams["AGE_30_39"]["resolution"])
    #  AGE_40_49Encoder = RandomDistributedScalarEncoder(enParams["AGE_40_49"]["resolution"])
    #  AGE_50_59Encoder = RandomDistributedScalarEncoder(enParams["AGE_50_59"]["resolution"])
    #  AGE_60_69Encoder = RandomDistributedScalarEncoder(enParams["AGE_60_69"]["resolution"])
    #  AGE_70_79Encoder = RandomDistributedScalarEncoder(enParams["AGE_70_79"]["resolution"])
    #  AGE_80_89Encoder = RandomDistributedScalarEncoder(enParams["AGE_80_89"]["resolution"])
    #  AGE_90_99Encoder = RandomDistributedScalarEncoder(enParams["AGE_90_99"]["resolution"])
    #  DIST_1_7Encoder = RandomDistributedScalarEncoder(enParams["DIST_1_7"]["resolution"])
    #  DIST_8_14Encoder = RandomDistributedScalarEncoder(enParams["DIST_8_14"]["resolution"])
    #  DIST_15_21Encoder = RandomDistributedScalarEncoder(enParams["DIST_15_21"]["resolution"])
    #  DIST_22_28Encoder = RandomDistributedScalarEncoder(enParams["DIST_22_28"]["resolution"])
    #  DIST_29_35Encoder = RandomDistributedScalarEncoder(enParams["DIST_29_35"]["resolution"])
    #  DIST_36_42Encoder = RandomDistributedScalarEncoder(enParams["DIST_36_42"]["resolution"])
    #  DIST_43_49Encoder = RandomDistributedScalarEncoder(enParams["DIST_43_49"]["resolution"])
    #  DIST_50_56Encoder = RandomDistributedScalarEncoder(enParams["DIST_50_56"]["resolution"])
    #  DIST_57_63Encoder = RandomDistributedScalarEncoder(enParams["DIST_57_63"]["resolution"])
    #  DIST_64_70Encoder = RandomDistributedScalarEncoder(enParams["DIST_64_70"]["resolution"])

    encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() +
                     CtEncoder.getWidth() * 2)

    sp = SpatialPooler(
        inputDimensions=(encodingWidth, ),
        columnDimensions=(spParams["columnCount"], ),
        potentialPct=spParams["potentialPct"],
        potentialRadius=encodingWidth,
        globalInhibition=spParams["globalInhibition"],
        localAreaDensity=spParams["localAreaDensity"],
        numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
        synPermInactiveDec=spParams["synPermInactiveDec"],
        synPermActiveInc=spParams["synPermActiveInc"],
        synPermConnected=spParams["synPermConnected"],
        boostStrength=spParams["boostStrength"],
        seed=spParams["seed"],
        wrapAround=True)

    tm = TemporalMemory(
        columnDimensions=(tmParams["columnCount"], ),
        cellsPerColumn=tmParams["cellsPerColumn"],
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        connectedPermanence=spParams["synPermConnected"],
        minThreshold=tmParams["minThreshold"],
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
        seed=tmParams["seed"])

    classifier = SDRClassifierFactory.create()
    results = []
    with open(_INPUT_FILE_PATH, "r") as fin:
        reader = csv.reader(fin)
        headers = reader.next()
        reader.next()
        reader.next()

        output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME)

        for count, record in enumerate(reader):

            if count >= numRecords: break

            # Convert data string into Python date object.
            dateString = datetime.datetime.strptime(record[0],
                                                    "%Y-%m-%d %H:%M:%S")
            # Convert data value string into float.
            Ct = float(record[1])
            ZIP_10467 = float(record[2])
            #      ZIP_10462 = float(record[3])
            #      ZIP_10475 = float(record[4])
            #      ZIP_10466 = float(record[5])
            #      ZIP_10469 = float(record[6])
            #      DEPT_11 = float(record[7])
            #      DEPT_24 = float(record[8])
            #      DEPT_41 = float(record[9])
            #      DEPT_34 = float(record[10])
            #      DEPT_31 = float(record[11])
            #      DEPT_60 = float(record[12])
            #      AGE_0_9 = float(record[13])
            #      AGE_10_19 = float(record[14])
            #      AGE_20_29 = float(record[15])
            #      AGE_30_39 = float(record[16])
            #      AGE_40_49 = float(record[17])
            #      AGE_50_59 = float(record[18])
            #      AGE_60_69 = float(record[19])
            #      AGE_70_79 = float(record[20])
            #      AGE_80_89 = float(record[21])
            #      AGE_90_99 = float(record[22])
            #      DIST_1_7 = float(record[23])
            #      DIST_8_14 = float(record[24])
            #      DIST_15_21 = float(record[25])
            #      DIST_22_28 = float(record[26])
            #      DIST_29_35 = float(record[27])
            #      DIST_36_42 = float(record[28])
            #      DIST_43_49 = float(record[29])
            #      DIST_50_56 = float(record[30])
            #      DIST_57_63 = float(record[31])
            #      DIST_64_70 = float(record[31])

            # To encode, we need to provide zero-filled numpy arrays for the encoders
            # to populate.
            timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
            weekendBits = numpy.zeros(weekendEncoder.getWidth())
            CtBits = numpy.zeros(CtEncoder.getWidth())
            ZIP_10467Bits = numpy.zeros(ZIP_10467Encoder.getWidth())
            #      ZIP_10462Bits = numpy.zeros(ZIP_10462Encoder.getWidth())
            #      ZIP_10475Bits = numpy.zeros(ZIP_10475Encoder.getWidth())
            #      ZIP_10466Bits = numpy.zeros(ZIP_10466Encoder.getWidth())
            #      ZIP_10469Bits = numpy.zeros(ZIP_10469Encoder.getWidth())
            #      DEPT_11Bits = numpy.zeros(DEPT_11Encoder.getWidth())
            #      DEPT_24Bits = numpy.zeros(DEPT_24Encoder.getWidth())
            #      DEPT_41Bits = numpy.zeros(DEPT_41Encoder.getWidth())
            #      DEPT_34Bits = numpy.zeros(DEPT_34Encoder.getWidth())
            #      DEPT_31Bits = numpy.zeros(DEPT_31Encoder.getWidth())
            #      DEPT_60Bits = numpy.zeros(DEPT_60Encoder.getWidth())
            #      AGE_0_9Bits = numpy.zeros(AGE_0_9Encoder.getWidth())
            #      AGE_10_19Bits = numpy.zeros(AGE_10_19Encoder.getWidth())
            #      AGE_20_29Bits = numpy.zeros(AGE_20_29Encoder.getWidth())
            #      AGE_30_39Bits = numpy.zeros(AGE_30_39Encoder.getWidth())
            #      AGE_40_49Bits = numpy.zeros(AGE_40_49Encoder.getWidth())
            #      AGE_50_59Bits = numpy.zeros(AGE_50_59Encoder.getWidth())
            #      AGE_60_69Bits = numpy.zeros(AGE_60_69Encoder.getWidth())
            #      AGE_70_79Bits = numpy.zeros(AGE_70_79Encoder.getWidth())
            #      AGE_80_89Bits = numpy.zeros(AGE_80_89Encoder.getWidth())
            #      AGE_90_99Bits = numpy.zeros(AGE_90_99Encoder.getWidth())
            #      DIST_1_7Bits = numpy.zeros(DIST_1_7Encoder.getWidth())
            #      DIST_8_14Bits = numpy.zeros(DIST_8_14Encoder.getWidth())
            #      DIST_15_21Bits = numpy.zeros(DIST_15_21Encoder.getWidth())
            #      DIST_22_28Bits = numpy.zeros(DIST_22_28Encoder.getWidth())
            #      DIST_29_35Bits = numpy.zeros(DIST_29_35Encoder.getWidth())
            #      DIST_36_42Bits = numpy.zeros(DIST_36_42Encoder.getWidth())
            #      DIST_43_49Bits = numpy.zeros(DIST_43_49Encoder.getWidth())
            #      DIST_50_56Bits = numpy.zeros(DIST_50_56Encoder.getWidth())
            #      DIST_57_63Bits = numpy.zeros(DIST_57_63Encoder.getWidth())
            #      DIST_64_70Bits = numpy.zeros(DIST_64_70Encoder.getWidth())

            # Now we call the encoders to create bit representations for each value.
            timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
            weekendEncoder.encodeIntoArray(dateString, weekendBits)
            CtEncoder.encodeIntoArray(Ct, CtBits)
            ZIP_10467Encoder.encodeIntoArray(ZIP_10467, ZIP_10467Bits)
            #      ZIP_10462Encoder.encodeIntoArray(ZIP_10462, ZIP_10462Bits)
            #      ZIP_10475Encoder.encodeIntoArray(ZIP_10475, ZIP_10475Bits)
            #      ZIP_10466Encoder.encodeIntoArray(ZIP_10466, ZIP_10466Bits)
            #      ZIP_10469Encoder.encodeIntoArray(ZIP_10469, ZIP_10469Bits)
            #      DEPT_11Encoder.encodeIntoArray(DEPT_11, DEPT_11Bits)
            #      DEPT_24Encoder.encodeIntoArray(DEPT_24, DEPT_24Bits)
            #      DEPT_41Encoder.encodeIntoArray(DEPT_41, DEPT_41Bits)
            #      DEPT_34Encoder.encodeIntoArray(DEPT_34, DEPT_34Bits)
            #      DEPT_31Encoder.encodeIntoArray(DEPT_31, DEPT_31Bits)
            #      DEPT_60Encoder.encodeIntoArray(DEPT_60, DEPT_60Bits)
            #      AGE_0_9Encoder.encodeIntoArray(AGE_0_9, AGE_0_9Bits)
            #      AGE_10_19Encoder.encodeIntoArray(AGE_10_19, AGE_10_19Bits)
            #      AGE_20_29Encoder.encodeIntoArray(AGE_20_29, AGE_20_29Bits)
            #      AGE_30_39Encoder.encodeIntoArray(AGE_30_39, AGE_30_39Bits)
            #      AGE_40_49Encoder.encodeIntoArray(AGE_40_49, AGE_40_49Bits)
            #      AGE_50_59Encoder.encodeIntoArray(AGE_50_59, AGE_50_59Bits)
            #      AGE_60_69Encoder.encodeIntoArray(AGE_60_69, AGE_60_69Bits)
            #      AGE_70_79Encoder.encodeIntoArray(AGE_70_79, AGE_70_79Bits)
            #      AGE_80_89Encoder.encodeIntoArray(AGE_80_89, AGE_80_89Bits)
            #      AGE_90_99Encoder.encodeIntoArray(AGE_90_99, AGE_90_99Bits)
            #      DIST_1_7Encoder.encodeIntoArray(DIST_1_7, DIST_1_7Bits)
            #      DIST_8_14Encoder.encodeIntoArray(DIST_8_14, DIST_8_14Bits)
            #      DIST_15_21Encoder.encodeIntoArray(DIST_15_21, DIST_15_21Bits)
            #      DIST_22_28Encoder.encodeIntoArray(DIST_22_28, DIST_22_28Bits)
            #      DIST_29_35Encoder.encodeIntoArray(DIST_29_35, DIST_29_35Bits)
            #      DIST_36_42Encoder.encodeIntoArray(DIST_36_42, DIST_36_42Bits)
            #      DIST_43_49Encoder.encodeIntoArray(DIST_43_49, DIST_43_49Bits)
            #      DIST_50_56Encoder.encodeIntoArray(DIST_50_56, DIST_50_56Bits)
            #      DIST_57_63Encoder.encodeIntoArray(DIST_57_63, DIST_57_63Bits)
            #      DIST_64_70Encoder.encodeIntoArray(DIST_64_70, DIST_64_70Bits)
            # Concatenate all these encodings into one large encoding for Spatial
            # Pooling.
            encoding = numpy.concatenate(
                [timeOfDayBits, weekendBits, CtBits, ZIP_10467Bits])
            #      encoding = numpy.concatenate(
            #        [timeOfDayBits, weekendBits, CtBits,
            #         ZIP_10467Bits, ZIP_10462Bits, ZIP_10475Bits, ZIP_10466Bits, ZIP_10469Bits,
            #         DEPT_11Bits, DEPT_24Bits, DEPT_41Bits, DEPT_34Bits, DEPT_31Bits,
            #         DEPT_60Bits, AGE_0_9Bits, AGE_10_19Bits, AGE_20_29Bits, AGE_30_39Bits,
            #         AGE_40_49Bits, AGE_50_59Bits, AGE_60_69Bits, AGE_70_79Bits, AGE_80_89Bits,
            #         AGE_90_99Bits, DIST_1_7Bits, DIST_8_14Bits, DIST_15_21Bits, DIST_22_28Bits,
            #         DIST_29_35Bits, DIST_36_42Bits, DIST_43_49Bits, DIST_50_56Bits, DIST_57_63Bits,
            #         DIST_64_70Bits])

            # Create an array to represent active columns, all initially zero. This
            # will be populated by the compute method below. It must have the same
            # dimensions as the Spatial Pooler.
            activeColumns = numpy.zeros(spParams["columnCount"])

            # Execute Spatial Pooling algorithm over input space.
            sp.compute(encoding, True, activeColumns)
            activeColumnIndices = numpy.nonzero(activeColumns)[0]

            # Execute Temporal Memory algorithm over active mini-columns.
            tm.compute(activeColumnIndices, learn=True)

            activeCells = tm.getActiveCells()

            # Get the bucket info for this input value for classification.
            bucketIdx = CtEncoder.getBucketIndices(Ct)[0]

            # Run classifier to translate active cells back to scalar value.
            classifierResult = classifier.compute(recordNum=count,
                                                  patternNZ=activeCells,
                                                  classification={
                                                      "bucketIdx": bucketIdx,
                                                      "actValue": Ct
                                                  },
                                                  learn=True,
                                                  infer=True)

            # Print the best prediction for 1 step out.
            oneStepConfidence, oneStep = sorted(zip(
                classifierResult[1], classifierResult["actualValues"]),
                                                reverse=True)[0]
            # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
            #      results.append([oneStep, oneStepConfidence * 100, None, None])
            results.append([record[0], Ct, oneStep, oneStepConfidence * 100])
            output.write(record[0], Ct, oneStep, oneStepConfidence * 100)

        output.close()
        return results
示例#26
0
encoder = ScalarEncoder(21, -1.0, 1.0, n=inputDimensions[0])
sp = SpatialPooler(inputDimensions=inputDimensions,
                   columnDimensions=columnDimensions,
                   globalInhibition=True,
                   numActiveColumnsPerInhArea=21)
tm = TemporalMemory(columnDimensions=columnDimensions)
c = SDRClassifier(steps=[1], alpha=0.1, actValueAlpha=0.1, verbosity=0)

x_true = x[1:]
x_predict = np.zeros(len(x) - 1)

for i, xi in tqdm(enumerate(x[:-1])):
    encoded = encoder.encode(xi)
    bucketIdx = np.where(encoded > 0)[0][0]
    spd = np.zeros(columnDimensions[0])
    sp.compute(encoded, True, spd)
    active_indices = np.where(spd > 0)[0]
    tm.compute(active_indices)

    active_cell_indices = tm.getActiveCells()
    predictive_cell_indices = tm.getPredictiveCells()
    patternNZ = np.asarray(active_cell_indices)
    patternNZ = np.append(patternNZ, predictive_cell_indices)
    patternNZ = patternNZ.astype(np.int)
    patternNZ = list(set(patternNZ))

    result = c.compute(recordNum=i,
                       patternNZ=patternNZ,
                       classification={
                           "bucketIdx": bucketIdx,
                           "actValue": xi
示例#27
0
def runHotgym(numRecords):
    with open(_PARAMS_PATH, "r") as f:
        modelParams = yaml.safe_load(f)["modelParams"]
        enParams = modelParams["sensorParams"]["encoders"]
        spParams = modelParams["spParams"]
        tmParams = modelParams["tmParams"]

    timeOfDayEncoder = DateEncoder(
        timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
    weekendEncoder = DateEncoder(
        weekend=enParams["timestamp_weekend"]["weekend"])
    scalarEncoder = RandomDistributedScalarEncoder(
        enParams["consumption"]["resolution"])

    encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() +
                     scalarEncoder.getWidth())

    sp = SpatialPooler(
        # How large the input encoding will be.
        inputDimensions=(encodingWidth, ),
        # How many mini-columns will be in the Spatial Pooler.
        columnDimensions=(spParams["columnCount"], ),
        # What percent of the columns"s receptive field is available for potential
        # synapses?
        potentialPct=spParams["potentialPct"],
        # Potential radius should be set to the input size if there is global
        # inhibition.
        potentialRadius=encodingWidth,
        # This means that the input space has no topology.
        globalInhibition=spParams["globalInhibition"],
        localAreaDensity=spParams["localAreaDensity"],
        # Roughly 2%, giving that there is only one inhibition area because we have
        # turned on globalInhibition (40 / 2048 = 0.0195)
        numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
        # How quickly synapses grow and degrade.
        synPermInactiveDec=spParams["synPermInactiveDec"],
        synPermActiveInc=spParams["synPermActiveInc"],
        synPermConnected=spParams["synPermConnected"],
        # boostStrength controls the strength of boosting. Boosting encourages
        # efficient usage of SP columns.
        boostStrength=spParams["boostStrength"],
        # Random number generator seed.
        seed=spParams["seed"],
        # TODO: is this useful?
        # Determines if inputs at the beginning and end of an input dimension should
        # be considered neighbors when mapping columns to inputs.
        wrapAround=True)

    tm = TemporalMemory(
        # Must be the same dimensions as the SP
        columnDimensions=(tmParams["columnCount"], ),
        # How many cells in each mini-column.
        cellsPerColumn=tmParams["cellsPerColumn"],
        # A segment is active if it has >= activationThreshold connected synapses
        # that are active due to infActiveState
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        # TODO: This comes from the SP params, is this normal
        connectedPermanence=spParams["synPermConnected"],
        # Minimum number of active synapses for a segment to be considered during
        # search for the best-matching segments.
        minThreshold=tmParams["minThreshold"],
        # The max number of synapses added to a segment during learning
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
        seed=tmParams["seed"])

    classifier = SDRClassifierFactory.create()
    results = []
    with open(_INPUT_FILE_PATH, "r") as fin:
        reader = csv.reader(fin)
        headers = reader.next()
        reader.next()
        reader.next()

        for count, record in enumerate(reader):

            if count >= numRecords: break

            # Convert data string into Python date object.
            dateString = datetime.datetime.strptime(record[0],
                                                    "%m/%d/%y %H:%M")
            # Convert data value string into float.
            consumption = float(record[1])

            # To encode, we need to provide zero-filled numpy arrays for the encoders
            # to populate.
            timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
            weekendBits = numpy.zeros(weekendEncoder.getWidth())
            consumptionBits = numpy.zeros(scalarEncoder.getWidth())

            # Now we call the encoders create bit representations for each value.
            timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
            weekendEncoder.encodeIntoArray(dateString, weekendBits)
            scalarEncoder.encodeIntoArray(consumption, consumptionBits)

            # Concatenate all these encodings into one large encoding for Spatial
            # Pooling.
            encoding = numpy.concatenate(
                [timeOfDayBits, weekendBits, consumptionBits])

            # Create an array to represent active columns, all initially zero. This
            # will be populated by the compute method below. It must have the same
            # dimensions as the Spatial Pooler.
            activeColumns = numpy.zeros(spParams["columnCount"])

            # Execute Spatial Pooling algorithm over input space.
            sp.compute(encoding, True, activeColumns)
            activeColumnIndices = numpy.nonzero(activeColumns)[0]

            # Execute Temporal Memory algorithm over active mini-columns.
            tm.compute(activeColumnIndices, learn=True)

            activeCells = tm.getActiveCells()

            # Get the bucket info for this input value for classification.
            bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]

            # Run classifier to translate active cells back to scalar value.
            classifierResult = classifier.compute(recordNum=count,
                                                  patternNZ=activeCells,
                                                  classification={
                                                      "bucketIdx": bucketIdx,
                                                      "actValue": consumption
                                                  },
                                                  learn=True,
                                                  infer=True)

            # Print the best prediction for 1 step out.
            oneStepConfidence, oneStep = sorted(zip(
                classifierResult[1], classifierResult["actualValues"]),
                                                reverse=True)[0]
            print("1-step: {:16} ({:4.4}%)".format(oneStep,
                                                   oneStepConfidence * 100))
            results.append([oneStep, oneStepConfidence * 100, None, None])

        return results
示例#28
0
def runHotgym(numRecords):
  with open(_PARAMS_PATH, "r") as f:
    modelParams = yaml.safe_load(f)["modelParams"]
    enParams = modelParams["sensorParams"]["encoders"]
    spParams = modelParams["spParams"]
    tmParams = modelParams["tmParams"]

  timeOfDayEncoder = DateEncoder(
    timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
  weekendEncoder = DateEncoder(
    weekend=enParams["timestamp_weekend"]["weekend"])
  scalarEncoder = RandomDistributedScalarEncoder(
    enParams["consumption"]["resolution"])

  encodingWidth = (timeOfDayEncoder.getWidth()
                   + weekendEncoder.getWidth()
                   + scalarEncoder.getWidth())

  sp = SpatialPooler(
    # How large the input encoding will be.
    inputDimensions=(encodingWidth),
    # How many mini-columns will be in the Spatial Pooler.
    columnDimensions=(spParams["columnCount"]),
    # What percent of the columns"s receptive field is available for potential
    # synapses?
    potentialPct=spParams["potentialPct"],
    # This means that the input space has no topology.
    globalInhibition=spParams["globalInhibition"],
    localAreaDensity=spParams["localAreaDensity"],
    # Roughly 2%, giving that there is only one inhibition area because we have
    # turned on globalInhibition (40 / 2048 = 0.0195)
    numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
    # How quickly synapses grow and degrade.
    synPermInactiveDec=spParams["synPermInactiveDec"],
    synPermActiveInc=spParams["synPermActiveInc"],
    synPermConnected=spParams["synPermConnected"],
    # boostStrength controls the strength of boosting. Boosting encourages
    # efficient usage of SP columns.
    boostStrength=spParams["boostStrength"],
    # Random number generator seed.
    seed=spParams["seed"],
    # TODO: is this useful?
    # Determines if inputs at the beginning and end of an input dimension should
    # be considered neighbors when mapping columns to inputs.
    wrapAround=False
  )

  tm = TemporalMemory(
    # Must be the same dimensions as the SP
    columnDimensions=(tmParams["columnCount"],),
    # How many cells in each mini-column.
    cellsPerColumn=tmParams["cellsPerColumn"],
    # A segment is active if it has >= activationThreshold connected synapses
    # that are active due to infActiveState
    activationThreshold=tmParams["activationThreshold"],
    initialPermanence=tmParams["initialPerm"],
    # TODO: This comes from the SP params, is this normal
    connectedPermanence=spParams["synPermConnected"],
    # Minimum number of active synapses for a segment to be considered during
    # search for the best-matching segments.
    minThreshold=tmParams["minThreshold"],
    # The max number of synapses added to a segment during learning
    maxNewSynapseCount=tmParams["newSynapseCount"],
    permanenceIncrement=tmParams["permanenceInc"],
    permanenceDecrement=tmParams["permanenceDec"],
    predictedSegmentDecrement=0.0,
    maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
    maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
    seed=tmParams["seed"]
  )

  classifier = SDRClassifierFactory.create()
  results = []
  with open(_INPUT_FILE_PATH, "r") as fin:
    reader = csv.reader(fin)
    headers = reader.next()
    reader.next()
    reader.next()

    for count, record in enumerate(reader):

      if count >= numRecords: break

      # Convert data string into Python date object.
      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
      # Convert data value string into float.
      consumption = float(record[1])

      # To encode, we need to provide zero-filled numpy arrays for the encoders
      # to populate.
      timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
      weekendBits = numpy.zeros(weekendEncoder.getWidth())
      consumptionBits = numpy.zeros(scalarEncoder.getWidth())

      # Now we call the encoders create bit representations for each value.
      timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
      weekendEncoder.encodeIntoArray(dateString, weekendBits)
      scalarEncoder.encodeIntoArray(consumption, consumptionBits)

      # Concatenate all these encodings into one large encoding for Spatial
      # Pooling.
      encoding = numpy.concatenate(
        [timeOfDayBits, weekendBits, consumptionBits]
      )

      # Create an array to represent active columns, all initially zero. This
      # will be populated by the compute method below. It must have the same
      # dimensions as the Spatial Pooler.
      activeColumns = numpy.zeros(spParams["columnCount"])

      # Execute Spatial Pooling algorithm over input space.
      sp.compute(encoding, True, activeColumns)
      activeColumnIndices = numpy.nonzero(activeColumns)[0]

      # Execute Temporal Memory algorithm over active mini-columns.
      tm.compute(activeColumnIndices, learn=True)

      activeCells = tm.getActiveCells()

      # Get the bucket info for this input value for classification.
      bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]

      # Run classifier to translate active cells back to scalar value.
      classifierResult = classifier.compute(
        recordNum=count,
        patternNZ=activeCells,
        classification={
          "bucketIdx": bucketIdx,
          "actValue": consumption
        },
        learn=True,
        infer=True
      )

      # Print the best prediction for 1 step out.
      oneStepConfidence, oneStep = sorted(
        zip(classifierResult[1], classifierResult["actualValues"]),
        reverse=True
      )[0]
      print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
      results.append([oneStep, oneStepConfidence * 100, None, None])

    return results
示例#29
0
    def _runLearnInference(self,
                           n=30,
                           w=15,
                           columnDimensions=2048,
                           numActiveColumnsPerInhArea=40,
                           spSeed=1951,
                           spVerbosity=0,
                           numTrainingRecords=100,
                           seed=42):
        # Instantiate two identical spatial pooler. One will be used only for
        # learning. The other will be trained with identical records, but with
        # random inference calls thrown in
        spLearnOnly = SpatialPooler(
            columnDimensions=(columnDimensions, 1),
            inputDimensions=(1, n),
            potentialRadius=n / 2,
            numActiveColumnsPerInhArea=numActiveColumnsPerInhArea,
            spVerbosity=spVerbosity,
            seed=spSeed,
            synPermInactiveDec=0.01,
            synPermActiveInc=0.2,
            synPermConnected=0.11,
        )

        spLearnInfer = SpatialPooler(
            columnDimensions=(columnDimensions, 1),
            inputDimensions=(1, n),
            potentialRadius=n / 2,
            numActiveColumnsPerInhArea=numActiveColumnsPerInhArea,
            spVerbosity=spVerbosity,
            seed=spSeed,
            synPermInactiveDec=0.01,
            synPermActiveInc=0.2,
            synPermConnected=0.11,
        )

        random.seed(seed)
        np.random.seed(seed)

        # Build up training set with numTrainingRecords patterns
        inputs = []  # holds post-encoded input patterns
        for i in xrange(numTrainingRecords):
            inputVector = np.zeros(n, dtype=realDType)
            inputVector[random.sample(xrange(n), w)] = 1
            inputs.append(inputVector)

        # Train each SP with identical inputs
        startTime = time.time()

        random.seed(seed)
        np.random.seed(seed)
        for i in xrange(numTrainingRecords):
            if spVerbosity > 0:
                print "Input #%d" % i
            # TODO: See https://github.com/numenta/nupic/issues/2072
            encodedInput = inputs[i]
            decodedOutput = np.zeros(columnDimensions)
            spLearnOnly.compute(encodedInput,
                                learn=True,
                                activeArray=decodedOutput)

        random.seed(seed)
        np.random.seed(seed)
        for i in xrange(numTrainingRecords):
            if spVerbosity > 0:
                print "Input #%d" % i
            # TODO: See https://github.com/numenta/nupic/issues/2072
            encodedInput = inputs[i]
            decodedOutput = np.zeros(columnDimensions)
            spLearnInfer.compute(encodedInput,
                                 learn=True,
                                 activeArray=decodedOutput)

        print "\nElapsed time: %.2f seconds\n" % (time.time() - startTime)

        # Test that both SP"s are identical by checking learning stats
        # A more in depth test would check all the coincidences, duty cycles, etc.
        # ala tpDiff
        # Edit: spDiff has been written as an in depth tester of the spatial pooler
        learnOnlyStats = spLearnOnly.getLearningStats()
        learnInferStats = spLearnInfer.getLearningStats()

        success = True
        # Check that the two spatial poolers are equivalent after the same training.
        success = success and spDiff(spLearnInfer, spLearnOnly)
        self.assertTrue(success)
        # Make sure that the pickled and loaded SPs are equivalent.
        spPickle = pickle.dumps(spLearnOnly, protocol=0)
        spLearnOnlyLoaded = pickle.loads(spPickle)
        success = success and spDiff(spLearnOnly, spLearnOnlyLoaded)
        self.assertTrue(success)
        for k in learnOnlyStats.keys():
            if learnOnlyStats[k] != learnInferStats[k]:
                success = False
                print "Stat", k, "is different:", learnOnlyStats[
                    k], learnInferStats[k]

        self.assertTrue(success)
        if success:
            print "Test succeeded"
示例#30
0
dd = 0

for i, linha in enumerate(teste):

    #####################################################

    scalar_encoder.encodeIntoArray(linha[1], bits_scalar)
    time_encoder.encodeIntoArray(linha[0], bits_time)

    encoder_output = np.concatenate((bits_time, bits_scalar))

    ####################################################

    sdr_output = np.zeros(N_COLUMNS)
    sp.compute(encoder_output, True, sdr_output)
    active_columns = np.nonzero(sdr_output)[0]

    ####################################################

    tm.compute(active_columns, learn=True)

    ####################################################

    anom_score[i] = anomaly_score.compute(tm.getActiveCells(),
                                          tm.getPredictiveCells())

    anom_logscore[i] = anomaly_likelihood.computeLogLikelihood(anom_score[i])

    if i % 100 == 0:
示例#31
0
class Entity():
    def __init__(self, columnCount, InputEncoderParams, toL4ConnectorParamsI,
                 toL4ConnectorParamsII, toL5ConnectorParams,
                 toD1ConnectorParams, toD2ConnectorParams, L4Params, L5Params,
                 k, D1Params, D2Params):
        self.columnCount = columnCount
        self.toL4ConnectorParamsI = toL4ConnectorParamsI
        self.toL4ConnectorParamsII = toL4ConnectorParamsII
        self.toL5ConnectorParams = toL5ConnectorParams
        self.toD1ConnectorParams = toD1ConnectorParams
        self.toD2ConnectorParams = toD2ConnectorParams
        self.L4Params = L4Params
        self.L5Params = L5Params
        self.k = k
        self.D1Params = D1Params
        self.D2Params = D2Params
        self.learning = False

        #encoder
        from nupic.encoders import MultiEncoder
        self.InputEncoder = MultiEncoder()
        self.InputEncoder.addMultipleEncoders(InputEncoderParams)
        print "Encoder Online"

        #spatialPoolers
        from nupic.algorithms.spatial_pooler import SpatialPooler
        self.toL4ConnectorI = SpatialPooler(
            inputDimensions=(toL4ConnectorParamsI["inputDimensions"], ),
            columnDimensions=(columnCount, ),
            potentialPct=toL4ConnectorParamsI["potentialPct"],
            globalInhibition=toL4ConnectorParamsI["globalInhibition"],
            localAreaDensity=toL4ConnectorParamsI["localAreaDensity"],
            numActiveColumnsPerInhArea=toL4ConnectorParamsI[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toL4ConnectorParamsI["synPermInactiveDec"],
            synPermActiveInc=toL4ConnectorParamsI["synPermActiveInc"],
            synPermConnected=toL4ConnectorParamsI["synPermConnected"],
            boostStrength=toL4ConnectorParamsI["boostStrength"],
            seed=toL4ConnectorParamsI["seed"],
            wrapAround=toL4ConnectorParamsI["wrapAround"])  #this part sucks
        self.toL4ConnectorII = SpatialPooler(
            inputDimensions=(columnCount * 3, ),
            columnDimensions=(columnCount, ),
            potentialPct=toL4ConnectorParamsII["potentialPct"],
            globalInhibition=toL4ConnectorParamsII["globalInhibition"],
            localAreaDensity=toL4ConnectorParamsII["localAreaDensity"],
            numActiveColumnsPerInhArea=toL4ConnectorParamsII[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toL4ConnectorParamsII["synPermInactiveDec"],
            synPermActiveInc=toL4ConnectorParamsII["synPermActiveInc"],
            synPermConnected=toL4ConnectorParamsII["synPermConnected"],
            boostStrength=toL4ConnectorParamsII["boostStrength"],
            seed=toL4ConnectorParamsII["seed"],
            wrapAround=toL4ConnectorParamsII["wrapAround"])
        print "toL4Connector Online"
        self.toL5Connector = SpatialPooler(
            inputDimensions=(columnCount, ),
            columnDimensions=(columnCount, ),
            potentialPct=toL5ConnectorParams["potentialPct"],
            globalInhibition=toL5ConnectorParams["globalInhibition"],
            localAreaDensity=toL5ConnectorParams["localAreaDensity"],
            numActiveColumnsPerInhArea=toL5ConnectorParams[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toL5ConnectorParams["synPermInactiveDec"],
            synPermActiveInc=toL5ConnectorParams["synPermActiveInc"],
            synPermConnected=toL5ConnectorParams["synPermConnected"],
            boostStrength=toL5ConnectorParams["boostStrength"],
            seed=toL5ConnectorParams["seed"],
            wrapAround=toL5ConnectorParams["wrapAround"])
        print "toL5Connector Online"
        self.toD1Connector = SpatialPooler(
            inputDimensions=(columnCount, ),
            columnDimensions=(columnCount, ),
            potentialPct=toD1ConnectorParams["potentialPct"],
            globalInhibition=toD1ConnectorParams["globalInhibition"],
            localAreaDensity=toD1ConnectorParams["localAreaDensity"],
            numActiveColumnsPerInhArea=toD1ConnectorParams[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toD1ConnectorParams["synPermInactiveDec"],
            synPermActiveInc=toD1ConnectorParams["synPermActiveInc"],
            synPermConnected=toD1ConnectorParams["synPermConnected"],
            boostStrength=toD1ConnectorParams["boostStrength"],
            seed=toD1ConnectorParams["seed"],
            wrapAround=toD1ConnectorParams["wrapAround"])
        print "toD1Connector Online"
        self.toD2Connector = SpatialPooler(
            inputDimensions=(columnCount, ),
            columnDimensions=(columnCount, ),
            potentialPct=toD2ConnectorParams["potentialPct"],
            globalInhibition=toD2ConnectorParams["globalInhibition"],
            localAreaDensity=toD2ConnectorParams["localAreaDensity"],
            numActiveColumnsPerInhArea=toD2ConnectorParams[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toD2ConnectorParams["synPermInactiveDec"],
            synPermActiveInc=toD2ConnectorParams["synPermActiveInc"],
            synPermConnected=toD2ConnectorParams["synPermConnected"],
            boostStrength=toD2ConnectorParams["boostStrength"],
            seed=toD2ConnectorParams["seed"],
            wrapAround=toD2ConnectorParams["wrapAround"])
        print "toD2Connector Online"

        #HTM Layers
        from nupic.algorithms.temporal_memory import TemporalMemory
        self.L4ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.L4 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
        )
        print "L4 Online"
        self.L5ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.L5 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
        )
        print "L5 Online"
        self.D1ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.D1 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
            initialPermanence=0.21,
            connectedPermanence=0.5,
        )
        print "D1 Online"
        self.D2ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.D2 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
            initialPermanence=0.21,
            connectedPermanence=0.5,
        )
        print "D2 Online"

    def encode_input(sine1, sine2, angularSpeed1, angularSpeed2,
                     efferenceCopy):
        return self.InputEncoder.encode({
            "sine1": sine1,
            "sine2": sine2,
            "angularSpeed1": angularSpeed1,
            "angularSpeed2": angularSpeed2,
            "efferenceCopy": efferenceCopy
        })

    def reset(self):
        self.action = 0
        self.L4.reset()
        self.L5.reset()
        self.D1.reset()
        self.D2.reset()

    def mimic(self, observation, action):
        #mimicking only requires remembering the given obs-act pattern,thus the striatum is neglected in this func
        self.learning = True
        self.action = action
        encodedInput = self.encode_input(observation[0], observation[2],
                                         observation[4], observation[5],
                                         str(action))

        self.toL4ConnectorI.compute(encodedInput, self.learning,
                                    self.L4ActiveColumns)
        self.L4.compute(self.L4ActiveColumns, learn=self.learning)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]

        L5Temp = numpy.zeros(self.columnCount, dtype=int)
        for column in L4activeColumnIndices:
            L5Temp[column] = 1
        self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns)
        self.L5.compute(self.L5ActiveColumns, learn=self.learning)
        L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0]

        #no action generation is needed in this func

    def learn(self, env, observation, expectedReaction):
        #We humans learn by trial and error,so does an AI agent.For neural networks,they have BP,but HTM does not
        #have a clear way to reinforcement learn(Where to feed in rewards?).Here I try to do something new.
        self.learning = False  #...trial
        encodedInput = self.encode_input(observation[0], observation[2],
                                         observation[4], observation[5],
                                         str(self.action))

        self.toL4ConnectorI.compute(encodedInput, self.learning,
                                    self.L4ActiveColumns)
        L4Temp = numpy.zeros(
            self.columnCount * 3, dtype=int
        )  #ready to receive D1's disinhibition and D2's inhibition
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]
        for column in L4activeColumnIndices:
            L4Temp[int(column) * 3] = 1
        D1ActiveColumnsIndices = numpy.nonzero(self.D1ActiveColumns)[0]
        for column in D1ActiveColumnsIndices:
            L4Temp[int(column) * 3 + 1] = 1
        D2ActiveColumnsIndices = numpy.nonzero(self.D2ActiveColumns)[0]
        for i in range(self.columnCount - 1):
            L4Temp[i * 3 + 2] = 1
        for column in D2ActiveColumnsIndices:  #achieve inhibition in this way
            L4Temp[i * 3 + 2] = 0
        self.toL4ConnectorII.compute(L4Temp, self.learning,
                                     self.L4ActiveColumns)
        self.L4.compute(self.L4ActiveColumns, learn=self.learning)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]

        L5Temp = numpy.zeros(self.columnCount, dtype=int)
        for column in L4activeColumnIndices:
            L5Temp[column] = 1
        self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns)
        self.L5.compute(self.L5ActiveColumns, learn=self.learning)
        L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0]

        #Action Generation
        p = 84  #there are 84 bits in the SDR representing the action fed in the agent,this is the "Efference Copy"
        count0 = 0
        count1 = 0
        count2 = 0
        for activeIndice in L5activeColumnIndices:
            convertedIndice = (activeIndice + 1) * 1126 / columnCount
            if convertedIndice <= 1126 - p / 4 and convertedIndice > 1126 - p / 2:
                count2 = count2 + 1
            if convertedIndice <= 1126 - p / 2 and convertedIndice > 1126 - 3 * p / 4:
                count1 = count1 + 1
            if convertedIndice <= 1126 - 3 * p / 4 and convertedIndice > 1126 - p:
                count0 = count0 + 1

        if count2 == max(count0, count1, count2):
            self.action = 2
        if count1 == max(count0, count1, count2):
            self.action = 1
        if count0 == max(count0, count1, count2):
            self.action = 0

        #...and error
        if self.action == expectedReaction:
            reward = 0.1
        else:
            reward = -0.1

        self.D1.setConnectedPermanence(self.D1.getConnectedPermanence() *
                                       (self.k**(-reward)))  #reward
        self.D2.setConnectedPermanence(self.D2.getConnectedPermanence() *
                                       (self.k**reward))  #punishment

        #Learn to correct mistakes(remember what's right and whats' wrong)
        self.learning = True
        DTemp = numpy.zeros(self.columnCount, dtype=int)
        for column in L5activeColumnIndices:
            DTemp[column] = 1
        self.toD1Connector.compute(DTemp, self.learning, self.D1ActiveColumns)
        self.toD2Connector.compute(DTemp, self.learning, self.D2ActiveColumns)
        self.D1.compute(self.D1ActiveColumns, learn=self.learning)
        self.D2.compute(self.D2ActiveColumns, learn=self.learning)

        return reward

    def react(self, observation):
        self.learning = False
        encodedInput = self.encode_input(observation[0], observation[2],
                                         observation[4], observation[5],
                                         str(self.action))

        self.toL4ConnectorI.compute(encodedInput, self.learning,
                                    self.L4ActiveColumns)
        L4Temp = numpy.zeros(self.columnCount * 3, dtype=int)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]
        for column in L4activeColumnIndices:
            L4Temp[int(column) * 3] = 1
        D1ActiveColumnsIndices = numpy.nonzero(self.D1ActiveColumns)[0]
        for column in D1ActiveColumnsIndices:
            L4Temp[int(column) * 3 + 1] = 1
        D2ActiveColumnsIndices = numpy.nonzero(self.D2ActiveColumns)[0]
        for i in range(self.columnCount - 1):
            L4Temp[i * 3 + 2] = 1
        for column in D2ActiveColumnsIndices:
            L4Temp[i * 3 + 2] = 0
        self.toL4ConnectorII.compute(L4Temp, self.learning,
                                     self.L4ActiveColumns)
        self.L4.compute(self.L4ActiveColumns, learn=self.learning)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]

        L5Temp = numpy.zeros(self.columnCount, dtype=int)
        for column in L4activeColumnIndices:
            L5Temp[column] = 1
        self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns)
        self.L5.compute(self.L5ActiveColumns, learn=self.learning)
        L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0]

        p = 84
        count0 = 0
        count1 = 0
        count2 = 0
        for activeIndice in L5activeColumnIndices:
            convertedIndice = (activeIndice + 1) * 1126 / columnCount
            if convertedIndice <= 1126 - p / 4 and convertedIndice > 1126 - p / 2:
                count2 = count2 + 1
            if convertedIndice <= 1126 - p / 2 and convertedIndice > 1126 - 3 * p / 4:
                count1 = count1 + 1
            if convertedIndice <= 1126 - 3 * p / 4 and convertedIndice > 1126 - p:
                count0 = count0 + 1

        if count2 == max(count0, count1, count2):
            self.action = 2
        if count1 == max(count0, count1, count2):
            self.action = 1
        if count0 == max(count0, count1, count2):
            self.action = 0

        return self.action
示例#32
0
TM = TemporalMemory(columnDimensions=(pooler_out, ), cellsPerColumn=cell_col)

# Train Spatial Pooler
start = time.time()

active_columns = np.zeros(pooler_out)

print("Spatial pooler learning")

for x in range(len(Data)):
    encoder = multiencode(var_encoders, Data, x)
    # e_val = RDSE.encode(Data['value'][x])
    # e_tod = TODE.encode(Data.index[x])
    # e_wend = WENDE.encode(Data.index[x])
    # encoder = np.concatenate([e_val])
    SP.compute(encoder, True, active_columns)

end = time.time()
print(end - start)

print("Temporal pooler learning")

start = time.time()

A_score = np.zeros(len(Data))
for x in range(len(Data)):
    encoder = multiencode(var_encoders, Data, x)
    # e_val = RDSE.encode(Data['value'][x])
    # e_tod = TODE.encode(Data.index[x])
    # e_wend = WENDE.encode(Data.index[x])
    # encoder = np.concatenate([e_val])
class DendriteDetector(AnomalyDetector):
    def initialize(self):
        # Keep track of value range for spatial anomaly detection.
        self.minVal = None
        self.maxVal = None

        # Time of day encoder
        self.timeOfDayEncoder = DateEncoder(timeOfDay=(21, 9.49),
                                            name='time_enc')
        # RDSE encoder for the time series value.
        minResolution = 0.001
        rangePadding = abs(self.inputMax - self.inputMin) * 0.2
        minVal = self.inputMin - rangePadding
        maxVal = self.inputMax + rangePadding
        numBuckets = 130
        resolution = max(minResolution, (maxVal - minVal) / numBuckets)
        self.value_enc = RandomDistributedScalarEncoder(resolution=resolution,
                                                        name='value_rdse')

        # Spatial Pooler.
        encodingWidth = self.timeOfDayEncoder.getWidth(
        ) + self.value_enc.getWidth()
        self.sp = SpatialPooler(
            inputDimensions=(encodingWidth, ),
            columnDimensions=(2048, ),
            potentialPct=0.8,
            potentialRadius=encodingWidth,
            globalInhibition=1,
            numActiveColumnsPerInhArea=40,
            synPermInactiveDec=0.0005,
            synPermActiveInc=0.003,
            synPermConnected=0.2,
            boostStrength=0.0,
            seed=1956,
            wrapAround=True,
        )

        self.tm = TemporalMemory(
            columnDimensions=(2048, ),
            cellsPerColumn=32,
            activationThreshold=20,
            initialPermanence=.5,  # Increased to connectedPermanence.
            connectedPermanence=.5,
            minThreshold=13,
            maxNewSynapseCount=31,
            permanenceIncrement=0.04,
            permanenceDecrement=0.008,
            predictedSegmentDecrement=0.001,
            maxSegmentsPerCell=128,
            maxSynapsesPerSegment=
            128,  # Changed meaning. Also see connections.topology[2]
            seed=1993,
        )

        # Initialize the anomaly likelihood object
        numentaLearningPeriod = int(math.floor(self.probationaryPeriod / 2.0))
        self.anomalyLikelihood = anomaly_likelihood.AnomalyLikelihood(
            learningPeriod=numentaLearningPeriod,
            estimationSamples=self.probationaryPeriod - numentaLearningPeriod,
            reestimationPeriod=100,
        )

        self.age = 0

    def getAdditionalHeaders(self):
        """Returns a list of strings."""
        return ["raw_score"]

    def handleRecord(self, inputData):
        """
    Argument inputData is {"value": instantaneous_value, "timestamp": pandas.Timestamp}
    Returns a tuple (anomalyScore, rawScore).

    Internally to NuPIC "anomalyScore" corresponds to "likelihood_score"
    and "rawScore" corresponds to "anomaly_score". Sorry about that.
    """

        # Check for spatial anomalies and update min/max values.
        value = inputData["value"]
        spatialAnomaly = False
        if self.minVal != self.maxVal:
            tolerance = (self.maxVal - self.minVal) * SPATIAL_TOLERANCE
            maxExpected = self.maxVal + tolerance
            minExpected = self.minVal - tolerance
            if value > maxExpected or value < minExpected:
                spatialAnomaly = True
        if self.maxVal is None or value > self.maxVal:
            self.maxVal = value
        if self.minVal is None or value < self.minVal:
            self.minVal = value

        # Run the HTM stack.  First Encoders.
        timestamp = inputData["timestamp"]
        timeOfDayBits = np.zeros(self.timeOfDayEncoder.getWidth())
        self.timeOfDayEncoder.encodeIntoArray(timestamp, timeOfDayBits)
        valueBits = np.zeros(self.value_enc.getWidth())
        self.value_enc.encodeIntoArray(value, valueBits)
        encoding = np.concatenate([timeOfDayBits, valueBits])
        # Spatial Pooler.
        activeColumns = np.zeros(self.sp.getNumColumns())
        self.sp.compute(encoding, True, activeColumns)
        activeColumnIndices = np.nonzero(activeColumns)[0]
        # Temporal Memory and Anomaly.
        predictions = self.tm.getPredictiveCells()
        predictedColumns = list(self.tm.mapCellsToColumns(predictions).keys())
        self.tm.compute(activeColumnIndices, learn=True)
        activeCells = self.tm.getActiveCells()
        rawScore = anomaly.computeRawAnomalyScore(activeColumnIndices,
                                                  predictedColumns)

        # Compute log(anomaly likelihood)
        anomalyScore = self.anomalyLikelihood.anomalyProbability(
            inputData["value"], rawScore, inputData["timestamp"])
        finalScore = logScore = self.anomalyLikelihood.computeLogLikelihood(
            anomalyScore)

        if spatialAnomaly:
            finalScore = 1.0

        if False:
            # Plot correlation of excitement versus compartmentalization.
            if self.age == 0:
                print("Correlation Plots ENABLED.")
            if False:
                start_age = 1000
                end_age = 1800
            else:
                start_age = 4000
                end_age = 7260
            if self.age == start_age:
                import correlation
                import random
                self.cor_samplers = []
                sampled_cells = []
                while len(self.cor_samplers) < 20:
                    n = random.choice(xrange(self.tm.numberOfCells()))
                    if n in sampled_cells:
                        continue
                    else:
                        sampled_cells.append(n)
                    neuron = self.tm.connections.dataForCell(n)
                    if neuron._roots:
                        c = correlation.CorrelationSampler(neuron._roots[0])
                        c.random_sample_points(100)
                        self.cor_samplers.append(c)
                print("Created %d Correlation Samplers" %
                      len(self.cor_samplers))
            if self.age >= start_age:
                for smplr in self.cor_samplers:
                    smplr.sample()
            if self.age == end_age:
                import matplotlib.pyplot as plt
                for idx, smplr in enumerate(self.cor_samplers):
                    if smplr.num_samples == 0:
                        print("No samples, plot not shown.")
                        continue
                    plt.figure("Sample %d" % idx)
                    smplr.plot(period=64)  # Different value!
                plt.show()

        if False:
            # Plot excitement of a typical detection on a dendrite.
            if self.age == 7265:
                #if self.age == 1800:
                import matplotlib.pyplot as plt
                import random
                from connections import SYN_CONNECTED_ACTIVE
                sampled_cells = set()
                for figure_num in xrange(40):
                    plt.figure("(%d)" % figure_num)
                    # Find an active cell to view.
                    cell = None
                    for attempt in range(100):
                        event = random.choice(self.tm.activeEvents)
                        cell = event.cell  # This is an integer.
                        if cell is not None and cell not in sampled_cells:
                            break
                    else:
                        break
                    sampled_cells.add(cell)
                    cell = self.tm.connections.dataForCell(cell)
                    # Organize the data.
                    EPSPs = []
                    excitement = []
                    distance_to_root = 0
                    segment_offsets = {}
                    branch = cell._roots[0]
                    while True:
                        segment_offsets[branch] = distance_to_root
                        distance_to_root += len(branch._synapses)
                        excitement.extend(branch.excitement)
                        for syn in branch._synapses:
                            if syn is None:
                                EPSPs.append(0)
                            else:
                                EPSPs.append(syn.state == SYN_CONNECTED_ACTIVE)
                        if branch.children:
                            branch = random.choice(branch.children)
                        else:
                            break
                    plt.plot(
                        np.arange(distance_to_root),
                        EPSPs,
                        'r',
                        np.arange(distance_to_root),
                        excitement,
                        'b',
                    )
                    plt.title(
                        "Dendrite Activation\n Horizontal line is activation threshold, Vertical lines are segment bifurcations"
                    )
                    plt.xlabel("Distance along Dendrite", )
                    plt.ylabel("EPSPs are Red, Excitement is Blue")
                    # Show lines where the excitement crosses thresholds.
                    plt.axhline(20, color='k')  # Hard coded parameter value.
                    for offset in segment_offsets.values():
                        if offset != 0:
                            plt.axvline(offset, color='k')
                print("\nShowing %d excitement plots." % len(sampled_cells))
                plt.show()

        self.age += 1

        return (finalScore, rawScore)
示例#34
0
#print "warning =       ", warning
sp = SpatialPooler(inputDimensions=(len(info), ),
                   columnDimensions=(3, ),
                   potentialRadius=15,
                   numActiveColumnsPerInhArea=1,
                   globalInhibition=True,
                   synPermActiveInc=0.03,
                   potentialPct=1.0)
import numpy
for column in xrange(3):
    connected = numpy.zeros((len(info), ), dtype="int")
    sp.getConnectedSynapses(column, connected)
    print connected

output = numpy.zeros((3, ), dtype="int")
sp.compute(info, learn=True, activeArray=output)
print output

output = numpy.zeros((3, ), dtype="int")
sp.compute(error, learn=True, activeArray=output)
print output

output = numpy.zeros((3, ), dtype="int")
sp.compute(warning, learn=True, activeArray=output)
print output

for _ in xrange(200):
    sp.compute(info, learn=True, activeArray=output)
    sp.compute(error, learn=True, activeArray=output)
    sp.compute(warning, learn=True, activeArray=output)
    #sp.compute(loris, learn=True, activeArray=output)
def runHotgym(numRecords):
    with open(_PARAMS_PATH, "r") as f:
        modelParams = yaml.safe_load(f)["modelParams"]
        enParams = modelParams["sensorParams"]["encoders"]
        spParams = modelParams["spParams"]
        tmParams = modelParams["tmParams"]

    scalarEncoder = RandomDistributedScalarEncoder(
        enParams["consumption"]["resolution"])
    scalarEncoder2 = RandomDistributedScalarEncoder(
        enParams["consumption2"]["resolution"])

    encodingWidth = (scalarEncoder.getWidth() + scalarEncoder2.getWidth())

    sp = SpatialPooler(
        inputDimensions=(encodingWidth, ),
        columnDimensions=(spParams["columnCount"], ),
        potentialPct=spParams["potentialPct"],
        potentialRadius=encodingWidth,
        globalInhibition=spParams["globalInhibition"],
        localAreaDensity=spParams["localAreaDensity"],
        numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
        synPermInactiveDec=spParams["synPermInactiveDec"],
        synPermActiveInc=spParams["synPermActiveInc"],
        synPermConnected=spParams["synPermConnected"],
        boostStrength=spParams["boostStrength"],
        seed=spParams["seed"],
        wrapAround=True)

    tm = TemporalMemory(
        columnDimensions=(tmParams["columnCount"], ),
        cellsPerColumn=tmParams["cellsPerColumn"],
        activationThreshold=tmParams["activationThreshold"],
        initialPermanence=tmParams["initialPerm"],
        connectedPermanence=spParams["synPermConnected"],
        minThreshold=tmParams["minThreshold"],
        maxNewSynapseCount=tmParams["newSynapseCount"],
        permanenceIncrement=tmParams["permanenceInc"],
        permanenceDecrement=tmParams["permanenceDec"],
        predictedSegmentDecrement=0.0,
        maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
        maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
        seed=tmParams["seed"])

    classifier = SDRClassifierFactory.create()
    results = []
    with open(_INPUT_FILE_PATH, "r") as fin:
        reader = csv.reader(fin)
        headers = reader.next()
        reader.next()
        reader.next()

        output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME)

        for count, record in enumerate(reader):

            if count >= numRecords: break

            # Convert data string into Python date object.
            #      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
            # Convert data value string into float.
            prediction = float(record[1])
            prediction2 = float(record[2])

            # To encode, we need to provide zero-filled numpy arrays for the encoders
            # to populate.
            consumptionBits = numpy.zeros(scalarEncoder.getWidth())
            consumptionBits2 = numpy.zeros(scalarEncoder2.getWidth())

            # Now we call the encoders to create bit representations for each value.
            scalarEncoder.encodeIntoArray(prediction, consumptionBits)
            scalarEncoder2.encodeIntoArray(prediction2, consumptionBits2)

            # Concatenate all these encodings into one large encoding for Spatial
            # Pooling.
            encoding = numpy.concatenate([consumptionBits, consumptionBits2])

            # Create an array to represent active columns, all initially zero. This
            # will be populated by the compute method below. It must have the same
            # dimensions as the Spatial Pooler.
            activeColumns = numpy.zeros(spParams["columnCount"])

            # Execute Spatial Pooling algorithm over input space.
            sp.compute(encoding, True, activeColumns)
            activeColumnIndices = numpy.nonzero(activeColumns)[0]

            # Execute Temporal Memory algorithm over active mini-columns.
            tm.compute(activeColumnIndices, learn=True)

            activeCells = tm.getActiveCells()

            # Get the bucket info for this input value for classification.
            bucketIdx = scalarEncoder.getBucketIndices(prediction)[0]

            # Run classifier to translate active cells back to scalar value.
            classifierResult = classifier.compute(recordNum=count,
                                                  patternNZ=activeCells,
                                                  classification={
                                                      "bucketIdx": bucketIdx,
                                                      "actValue": prediction
                                                  },
                                                  learn=True,
                                                  infer=True)

            # Print the best prediction for 1 step out.
            oneStepConfidence, oneStep = sorted(zip(
                classifierResult[1], classifierResult["actualValues"]),
                                                reverse=True)[0]
            # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
            #      results.append([oneStep, oneStepConfidence * 100, None, None])
            results.append(
                [record[0], prediction, oneStep, oneStepConfidence * 100])
            output.write(record[0], prediction, oneStep,
                         oneStepConfidence * 100)

        output.close()
        return results
示例#36
0
def runHotgym(numRecords):
  with open(_PARAMS_PATH, "r") as f:
    modelParams = yaml.safe_load(f)["modelParams"]
    enParams = modelParams["sensorParams"]["encoders"]
    spParams = modelParams["spParams"]
    tmParams = modelParams["tmParams"]

  timeOfDayEncoder = DateEncoder(
    timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
  weekendEncoder = DateEncoder(
    weekend=enParams["timestamp_weekend"]["weekend"])
  scalarEncoder = RandomDistributedScalarEncoder(
    enParams["consumption"]["resolution"])

  encodingWidth = (timeOfDayEncoder.getWidth()
                   + weekendEncoder.getWidth()
                   + scalarEncoder.getWidth())

  sp = SpatialPooler(
    inputDimensions=(encodingWidth,),
    columnDimensions=(spParams["columnCount"],),
    potentialPct=spParams["potentialPct"],
    potentialRadius=encodingWidth,
    globalInhibition=spParams["globalInhibition"],
    localAreaDensity=spParams["localAreaDensity"],
    numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
    synPermInactiveDec=spParams["synPermInactiveDec"],
    synPermActiveInc=spParams["synPermActiveInc"],
    synPermConnected=spParams["synPermConnected"],
    boostStrength=spParams["boostStrength"],
    seed=spParams["seed"],
    wrapAround=True
  )

  tm = TemporalMemory(
    columnDimensions=(tmParams["columnCount"],),
    cellsPerColumn=tmParams["cellsPerColumn"],
    activationThreshold=tmParams["activationThreshold"],
    initialPermanence=tmParams["initialPerm"],
    connectedPermanence=spParams["synPermConnected"],
    minThreshold=tmParams["minThreshold"],
    maxNewSynapseCount=tmParams["newSynapseCount"],
    permanenceIncrement=tmParams["permanenceInc"],
    permanenceDecrement=tmParams["permanenceDec"],
    predictedSegmentDecrement=0.0,
    maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
    maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
    seed=tmParams["seed"]
  )

  classifier = SDRClassifierFactory.create()
  results = []
  with open(_INPUT_FILE_PATH, "r") as fin:
    reader = csv.reader(fin)
    headers = reader.next()
    reader.next()
    reader.next()

    for count, record in enumerate(reader):

      if count >= numRecords: break

      # Convert data string into Python date object.
      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
      # Convert data value string into float.
      consumption = float(record[1])

      # To encode, we need to provide zero-filled numpy arrays for the encoders
      # to populate.
      timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
      weekendBits = numpy.zeros(weekendEncoder.getWidth())
      consumptionBits = numpy.zeros(scalarEncoder.getWidth())

      # Now we call the encoders to create bit representations for each value.
      timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
      weekendEncoder.encodeIntoArray(dateString, weekendBits)
      scalarEncoder.encodeIntoArray(consumption, consumptionBits)

      # Concatenate all these encodings into one large encoding for Spatial
      # Pooling.
      encoding = numpy.concatenate(
        [timeOfDayBits, weekendBits, consumptionBits]
      )

      # Create an array to represent active columns, all initially zero. This
      # will be populated by the compute method below. It must have the same
      # dimensions as the Spatial Pooler.
      activeColumns = numpy.zeros(spParams["columnCount"])

      # Execute Spatial Pooling algorithm over input space.
      sp.compute(encoding, True, activeColumns)
      activeColumnIndices = numpy.nonzero(activeColumns)[0]

      # Execute Temporal Memory algorithm over active mini-columns.
      tm.compute(activeColumnIndices, learn=True)

      activeCells = tm.getActiveCells()

      # Get the bucket info for this input value for classification.
      bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]

      # Run classifier to translate active cells back to scalar value.
      classifierResult = classifier.compute(
        recordNum=count,
        patternNZ=activeCells,
        classification={
          "bucketIdx": bucketIdx,
          "actValue": consumption
        },
        learn=True,
        infer=True
      )

      # Print the best prediction for 1 step out.
      oneStepConfidence, oneStep = sorted(
        zip(classifierResult[1], classifierResult["actualValues"]),
        reverse=True
      )[0]
      print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
      results.append([oneStep, oneStepConfidence * 100, None, None])

    return results