def main(): x = 10 y = 10 steps = 10000 world = np.array([i for i in xrange(625)]) world.resize((25, 25)) spInputSize = 21*21 sp = SpatialPooler( inputDimensions=(spInputSize,), columnDimensions=(25,), potentialRadius=spInputSize, numActiveColumnsPerInhArea=1, synPermActiveInc=0.1, synPermInactiveDec=0.5, boostStrength=1.0, ) csFields = generateCenterSurroundFields() output = np.zeros((25,), dtype=np.uint32) for _ in xrange(steps): active = getActive(world, x, y) assert len(active) == 25, "{}, {}: {}".format(x, y, active) activeInput = np.zeros((625,), dtype=np.uint32) for v in active: activeInput[v] = 1 centerSurround = processCenterSurround(csFields, activeInput) print centerSurround sp.compute(centerSurround, True, output) x, y = getNewLocation(x, y, 25, 2, False) for i in xrange(25): permanence = np.zeros((spInputSize,)) sp.getPermanence(i, permanence) plt.imshow(permanence.reshape((21, 21)), cmap="hot", interpolation="nearest") plt.show()
def main(): x = 10 y = 10 steps = 10000 history = [] world = np.array([i for i in xrange(625)]) world.resize((25, 25)) sp = SpatialPooler( inputDimensions=(625, ), columnDimensions=(25, ), potentialRadius=625, numActiveColumnsPerInhArea=1, ) output = np.zeros((25, ), dtype=np.uint32) for _ in xrange(steps): active = getActive(world, x, y) assert len(active) == 25, "{}, {}: {}".format(x, y, active) activeInput = np.zeros((625, ), dtype=np.uint32) for v in active: activeInput[v] = 1 history.append(active) sp.compute(activeInput, True, output) x, y = getNewLocation(x, y, 25, 2, False) for i in xrange(25): permanence = np.zeros((625, )) sp.getPermanence(i, permanence) plt.imshow(permanence.reshape((25, 25)), cmap="hot", interpolation="nearest") plt.show()
def test_whether_is_the_same_as_spatial_pooler(self): """ Naive reality check for the encoding function of the lateral pooler implementation. """ n = 1024 m = 784 d = 100 w = 20 X = np.random.randint(0,2,size=(m,d)) Y_nup = np.zeros((n,d)) Y_lat = np.zeros((n,d)) params_nup = { "inputDimensions": [m,1], "columnDimensions": [n,1], "potentialRadius": n, "potentialPct": 1.0, "globalInhibition": True, "localAreaDensity": -1.0, "numActiveColumnsPerInhArea": w, "stimulusThreshold": 0, "synPermInactiveDec": 0.05, "synPermActiveInc" : 0.1, "synPermConnected" : 0.5, "minPctOverlapDutyCycle": 0.001, "dutyCyclePeriod": 1000, "boostStrength" : 100.0, "seed": 1936 } params_lat = params_nup.copy() params_lat["lateralLearningRate"] = 0.0 params_lat["enforceDesiredWeight"] = False sp_nup = SpatialPooler(**params_nup) sp_lat = LateralPooler(**params_lat) for t in range(d): sp_nup.compute(X[:,t], False, Y_nup[:,t]) sp_lat.compute(X[:,t], False, Y_lat[:,t]) self.assertTrue(np.all(Y_nup == Y_lat), "Produces wrong output even without learning.") for t in range(d): sp_nup.compute(X[:,t], True, Y_nup[:,t]) sp_lat.compute(X[:,t], True, Y_lat[:,t]) self.assertTrue(np.all(Y_nup == Y_lat), "Wrong outputs, something diverges during learning.") W_nup = get_W(sp_nup) W_lat = get_W(sp_lat) self.assertTrue(np.all(W_nup == W_lat), "Wrong synaptic weights, something diverges during learning.")
def test_whether_is_the_same_as_spatial_pooler(self): """ Naive reality check for the encoding function of the lateral pooler implementation. """ n = 1024 m = 784 d = 100 w = 20 X = np.random.randint(0, 2, size=(m, d)) Y_nup = np.zeros((n, d)) Y_lat = np.zeros((n, d)) params_nup = { "inputDimensions": [m, 1], "columnDimensions": [n, 1], "potentialRadius": n, "potentialPct": 1.0, "globalInhibition": True, "localAreaDensity": -1.0, "numActiveColumnsPerInhArea": w, "stimulusThreshold": 0, "synPermInactiveDec": 0.05, "synPermActiveInc": 0.1, "synPermConnected": 0.5, "minPctOverlapDutyCycle": 0.001, "dutyCyclePeriod": 1000, "boostStrength": 100.0, "seed": 1936 } params_lat = params_nup.copy() params_lat["lateralLearningRate"] = 0.0 params_lat["enforceDesiredWeight"] = False sp_nup = SpatialPooler(**params_nup) sp_lat = LateralPooler(**params_lat) for t in range(d): sp_nup.compute(X[:, t], False, Y_nup[:, t]) sp_lat.compute(X[:, t], False, Y_lat[:, t]) self.assertTrue(np.all(Y_nup == Y_lat), "Produces wrong output even without learning.") for t in range(d): sp_nup.compute(X[:, t], True, Y_nup[:, t]) sp_lat.compute(X[:, t], True, Y_lat[:, t]) self.assertTrue(np.all(Y_nup == Y_lat), "Wrong outputs, something diverges during learning.") W_nup = get_W(sp_nup) W_lat = get_W(sp_lat) self.assertTrue( np.all(W_nup == W_lat), "Wrong synaptic weights, something diverges during learning.")
def main(): x = 10 y = 10 steps = 10000 ww = 50 wn = ww ** 2 rr = 3 rw = rr * 2 + 1 nCols = 25 history = [] world = np.array([i for i in xrange(wn)]) world.resize((ww, ww)) binaryWorld = np.zeros((wn,), dtype=np.uint32) binaryWorld[:wn/2] = 1 np.random.shuffle(binaryWorld) sp = SpatialPooler( inputDimensions=(rw ** 2,), columnDimensions=(nCols,), potentialRadius=25, potentialPct=1.0, numActiveColumnsPerInhArea=1, synPermActiveInc=0.01, synPermInactiveDec=0.003, boostStrength=15.0, dutyCyclePeriod=5, ) output = np.zeros((nCols,), dtype=np.uint32) for _ in xrange(steps): active = getActive(world, ww, x, y, rr) assert len(active) == (rw) ** 2, "{}, {}: {}".format(x, y, active) active = np.array(list(active)) activeInput = binaryWorld[active] sp.compute(activeInput, True, output) x, y = getNewLocation(x, y, ww, rr, False) # Check firing fields sp.setBoostStrength(0.0) firingFields = {} for i in xrange(nCols): firingFields[i] = np.zeros((ww-rw, ww-rw), dtype=np.uint32) for i in xrange(0, ww-rw+1): for j in xrange(0, ww-rw+1): active = getActive(world, ww, i, j, rr) active = np.array(list(active)) activeInput = binaryWorld[active] sp.compute(activeInput, True, output) for column in list(output.nonzero()): firingFields[column[0]][i:i+rr, j:j+rr] += 1 for col, ff in firingFields.iteritems(): plt.imshow(ff, cmap="hot", interpolation="nearest") plt.show()
def testCompatibilityCppPyDirectCall1D(self): """Check SP implementations have same behavior with 1D input.""" pySp = PySpatialPooler(inputDimensions=[121], columnDimensions=[300]) cppSp = CPPSpatialPooler(inputDimensions=[121], columnDimensions=[300]) data = numpy.zeros([121], dtype=uintType) for i in range(21): data[i] = 1 nCols = 300 d1 = numpy.zeros(nCols, dtype=uintType) d2 = numpy.zeros(nCols, dtype=uintType) pySp.compute(data, True, d1) # learn cppSp.compute(data, True, d2) d1 = d1.nonzero()[0].tolist() d2 = d2.nonzero()[0].tolist() self.assertListEqual( d1, d2, "SP outputs are not equal: \n%s \n%s" % (str(d1), str(d2)))
def runTrial(ww, numColumns, potentialPct, inc, dec, mpo, dutyCycle, boost, steps, rr, spW, stimulusThreshold, connected, stepSize, jumpProb, directionStability): ws = ww ** 2 x = 10 y = 10 locationHeatmap = np.zeros((ww, ww)) history = [] world = np.array([i for i in xrange(ws)]) world.resize((ww, ww)) sp = SpatialPooler( inputDimensions=(ws,), columnDimensions=(numColumns,), potentialRadius=ws, potentialPct=potentialPct, numActiveColumnsPerInhArea=spW, stimulusThreshold=stimulusThreshold, synPermActiveInc=inc, synPermInactiveDec=dec, synPermConnected=connected, minPctOverlapDutyCycle=mpo, dutyCyclePeriod=dutyCycle, boostStrength=boost, seed=1936, globalInhibition=True, ) output = np.zeros((numColumns,), dtype=np.uint32) direction = 0 for i in xrange(steps): locationHeatmap[x][y] += 1 active = getActive(world, ww, x, y, rr) history.append(active) activeInput = np.zeros((ws,), dtype=np.uint32) for v in active: activeInput[v] = 1 sp.compute(activeInput, True, output) x, y, direction = getNewLocation(x, y, ww, rr, wrap=True, locationHeatmap=locationHeatmap, stepSize=stepSize, jumpProb=jumpProb, direction=direction, directionStability=directionStability) if (i + 1) % 100 == 0: saveImage(history, ws, ww, numColumns, locationHeatmap, potentialPct, inc, dec, mpo, dutyCycle, boost, rr, spW, i+1, sp) saveImage(history, ws, ww, numColumns, locationHeatmap, potentialPct, inc, dec, mpo, dutyCycle, boost, rr, spW, steps, sp)
def testCompatibilityCppPyDirectCall2D(self): """Check SP implementations have same behavior with 2D input.""" pySp = PySpatialPooler( inputDimensions=[121, 1], columnDimensions=[30, 30]) cppSp = CPPSpatialPooler( inputDimensions=[121, 1], columnDimensions=[30, 30]) data = numpy.zeros([121, 1], dtype=uintType) for i in xrange(21): data[i][0] = 1 nCols = 900 d1 = numpy.zeros(nCols, dtype=uintType) d2 = numpy.zeros(nCols, dtype=uintType) pySp.compute(data, True, d1) # learn cppSp.compute(data, True, d2) d1 = d1.nonzero()[0].tolist() d2 = d2.nonzero()[0].tolist() self.assertListEqual( d1, d2, "SP outputs are not equal: \n%s \n%s" % (str(d1), str(d2)))
def main(): x = 10 y = 10 steps = 10000 world = np.array([i for i in xrange(625)]) world.resize((25, 25)) spInputSize = 21 * 21 sp = SpatialPooler( inputDimensions=(spInputSize, ), columnDimensions=(25, ), potentialRadius=spInputSize, numActiveColumnsPerInhArea=1, synPermActiveInc=0.1, synPermInactiveDec=0.5, boostStrength=1.0, ) csFields = generateCenterSurroundFields() output = np.zeros((25, ), dtype=np.uint32) for _ in xrange(steps): active = getActive(world, x, y) assert len(active) == 25, "{}, {}: {}".format(x, y, active) activeInput = np.zeros((625, ), dtype=np.uint32) for v in active: activeInput[v] = 1 centerSurround = processCenterSurround(csFields, activeInput) print centerSurround sp.compute(centerSurround, True, output) x, y = getNewLocation(x, y, 25, 2, False) for i in xrange(25): permanence = np.zeros((spInputSize, )) sp.getPermanence(i, permanence) plt.imshow(permanence.reshape((21, 21)), cmap="hot", interpolation="nearest") plt.show()
def testSPNew(): """ New version of the test""" elemSize = 400 numSet = 42 addNear = True numRecords = 1000 wantPlot = False poolPct = 0.5 itr = 5 pattern = [60, 1000] doLearn = True start = 1 learnIter = 0 noLearnIter = 0 numLearns = 0 numTests = 0 numIter = 1 numGroups = 1000 PLOT_PRECISION = 100.0 distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1)) inputs = generateRandomInput(numGroups, elemSize, numSet) # Setup a SP sp = SpatialPooler( columnDimensions=(2048, 1), inputDimensions=(1, elemSize), potentialRadius=elemSize/2, numActiveColumnsPerInhArea=40, spVerbosity=0, stimulusThreshold=0, synPermConnected=0.12, seed=1, potentialPct=poolPct, globalInhibition=True ) cleanPlot = False for i in xrange(numRecords): input1 = getRandomWithMods(inputs, 4) if i % 2 == 0: input2 = getRandomWithMods(inputs, 4) else: input2 = input1.copy() input2 = modifyBits(input2, 21) inDist = (abs(input1-input2) > 0.1) intInDist = int(inDist.sum()/2+0.1) #print intInDist if start == 0: doLearn = True learnIter += 1 if learnIter == pattern[start]: numLearns += 1 start = 1 noLearnIter = 0 elif start == 1: doLearn = False noLearnIter += 1 if noLearnIter == pattern[start]: numTests += 1 start = 0 learnIter = 0 cleanPlot = True # TODO: See https://github.com/numenta/nupic/issues/2072 sp.compute(input1, learn=doLearn, activeArray=output1) sp.compute(input2, learn=doLearn, activeArray=output2) time.sleep(0.001) outDist = (abs(output1-output2) > 0.1) intOutDist = int(outDist.sum()/2+0.1) if not doLearn and intOutDist < 2 and intInDist > 10: """ sp.spVerbosity = 10 # TODO: See https://github.com/numenta/nupic/issues/2072 sp.compute(input1, learn=doLearn, activeArray=output1) sp.compute(input2, learn=doLearn, activeArray=output2) sp.spVerbosity = 0 print 'Elements has very small SP distance: %d' % intOutDist print output1.nonzero() print output2.nonzero() print sp._firingBoostFactors[output1.nonzero()[0]] print sp._synPermBoostFactors[output1.nonzero()[0]] print 'Input elements distance is %d' % intInDist print input1.nonzero() print input2.nonzero() sys.stdin.readline() """ if not doLearn: x = int(PLOT_PRECISION*intOutDist/40.0) y = int(PLOT_PRECISION*intInDist/42.0) if distribMatrix[x, y] < 0.1: distribMatrix[x, y] = 3 else: if distribMatrix[x, y] < 10: distribMatrix[x, y] += 1 #print i # If we don't want a plot, just continue if wantPlot and cleanPlot: plt.imshow(distribMatrix, origin='lower', interpolation = "nearest") plt.ylabel('SP (2048/40) distance in %') plt.xlabel('Input (400/42) distance in %') title = 'SP distribution' #if doLearn: # title += ', leaning ON' #else: # title += ', learning OFF' title += ', learn sets = %d' % numLearns title += ', test sets = %d' % numTests title += ', iter = %d' % numIter title += ', groups = %d' % numGroups title += ', Pct =%f' % poolPct plt.suptitle(title, fontsize=12) #plt.show() plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosNew', '%s' % i)) plt.clf() distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1)) cleanPlot = False
def testSP(): """ Run a SP test """ elemSize = 400 numSet = 42 addNear = True numRecords = 2 wantPlot = True poolPct = 0.5 itr = 1 doLearn = True while numRecords < 3: # Setup a SP sp = SpatialPooler( columnDimensions=(2048, 1), inputDimensions=(1, elemSize), potentialRadius=elemSize/2, numActiveColumnsPerInhArea=40, spVerbosity=0, stimulusThreshold=0, seed=1, potentialPct=poolPct, globalInhibition=True ) # Generate inputs using rand() inputs = generateRandomInput(numRecords, elemSize, numSet) if addNear: # Append similar entries (distance of 1) appendInputWithNSimilarValues(inputs, 42) inputSize = len(inputs) print 'Num random records = %d, inputs to process %d' % (numRecords, inputSize) # Run a number of iterations, with learning on or off, # retrieve results from the last iteration only outputs = np.zeros((inputSize,2048)) numIter = 1 if doLearn: numIter = itr for iter in xrange(numIter): for i in xrange(inputSize): time.sleep(0.001) if iter == numIter - 1: # TODO: See https://github.com/numenta/nupic/issues/2072 sp.compute(inputs[i], learn=doLearn, activeArray=outputs[i]) #print outputs[i].sum(), outputs[i] else: # TODO: See https://github.com/numenta/nupic/issues/2072 output = np.zeros(2048) sp.compute(inputs[i], learn=doLearn, activeArray=output) # Build a plot from the generated input and output and display it distribMatrix = generatePlot(outputs, inputs) # If we don't want a plot, just continue if wantPlot: plt.imshow(distribMatrix, origin='lower', interpolation = "nearest") plt.ylabel('SP (2048/40) distance in %') plt.xlabel('Input (400/42) distance in %') title = 'SP distribution' if doLearn: title += ', leaning ON' else: title += ', learning OFF' title += ', inputs = %d' % len(inputs) title += ', iterations = %d' % numIter title += ', poolPct =%f' % poolPct plt.suptitle(title, fontsize=12) plt.show() #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videos5', '%s' % numRecords)) #plt.clf() numRecords += 1 return
# ------- # A column connects to a subset of the input vector (specified # by both the potentialRadius and potentialPct). The overlap score # for a column is the number of connections to the input that become # active when presented with a vector. When learning is 'on' in the SP, # the active connections are reinforced, whereas those inactive are # depressed (according to parameters synPermActiveInc and synPermInactiveDec. # In order for the SP to create a sparse representation of the input, it # will select a small percentage (usually 2%) of its most active columns, # ie. columns with the largest overlap score. # In this first part, we will create a histogram showing the overlap scores # of the Spatial Pooler (SP) after feeding it with a random binary # input. As well, the histogram will show the scores of those columns # that are chosen to build the sparse representation of the input. sp.compute(inputArray, False, activeCols) overlaps = sp.getOverlaps() activeColsScores = [] for i in activeCols.nonzero(): activeColsScores.append(overlaps[i]) print("") print("---------------------------------") print("Figure 1 shows an histogram of the overlap scores") print("from all the columns in the spatial pooler, as well as the") print("overlap scores of those columns that were selected to build a") print("sparse representation of the input (shown in green).") print("The SP chooses 2% of the columns with the largest overlap score") print("to make such sparse representation.") print("---------------------------------") print("")
def testSP(): """ Run a SP test """ elemSize = 400 numSet = 42 addNear = True numRecords = 2 wantPlot = True poolPct = 0.5 itr = 1 doLearn = True while numRecords < 3: # Setup a SP sp = SpatialPooler(columnDimensions=(2048, 1), inputDimensions=(1, elemSize), potentialRadius=elemSize / 2, numActiveColumnsPerInhArea=40, spVerbosity=0, stimulusThreshold=0, seed=1, potentialPct=poolPct, globalInhibition=True) # Generate inputs using rand() inputs = generateRandomInput(numRecords, elemSize, numSet) if addNear: # Append similar entries (distance of 1) appendInputWithNSimilarValues(inputs, 42) inputSize = len(inputs) print('Num random records = %d, inputs to process %d' % (numRecords, inputSize)) # Run a number of iterations, with learning on or off, # retrieve results from the last iteration only outputs = np.zeros((inputSize, 2048)) numIter = 1 if doLearn: numIter = itr for iter in range(numIter): for i in range(inputSize): time.sleep(0.001) if iter == numIter - 1: # TODO: See https://github.com/numenta/nupic/issues/2072 sp.compute(inputs[i], learn=doLearn, activeArray=outputs[i]) #print outputs[i].sum(), outputs[i] else: # TODO: See https://github.com/numenta/nupic/issues/2072 output = np.zeros(2048) sp.compute(inputs[i], learn=doLearn, activeArray=output) # Build a plot from the generated input and output and display it distribMatrix = generatePlot(outputs, inputs) # If we don't want a plot, just continue if wantPlot: plt.imshow(distribMatrix, origin='lower', interpolation="nearest") plt.ylabel('SP (2048/40) distance in %') plt.xlabel('Input (400/42) distance in %') title = 'SP distribution' if doLearn: title += ', leaning ON' else: title += ', learning OFF' title += ', inputs = %d' % len(inputs) title += ', iterations = %d' % numIter title += ', poolPct =%f' % poolPct plt.suptitle(title, fontsize=12) plt.show() #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videos5', '%s' % numRecords)) #plt.clf() numRecords += 1 return
def _runLearnInference(self, n=30, w=15, columnDimensions=2048, numActiveColumnsPerInhArea=40, spSeed=1951, spVerbosity=0, numTrainingRecords=100, seed=42): # Instantiate two identical spatial pooler. One will be used only for # learning. The other will be trained with identical records, but with # random inference calls thrown in spLearnOnly = SpatialPooler( columnDimensions=(columnDimensions, 1), inputDimensions=(1, n), potentialRadius=n/2, numActiveColumnsPerInhArea=numActiveColumnsPerInhArea, spVerbosity=spVerbosity, seed=spSeed, synPermInactiveDec=0.01, synPermActiveInc=0.2, synPermConnected=0.11,) spLearnInfer = SpatialPooler( columnDimensions=(columnDimensions, 1), inputDimensions=(1, n), potentialRadius=n/2, numActiveColumnsPerInhArea=numActiveColumnsPerInhArea, spVerbosity=spVerbosity, seed=spSeed, synPermInactiveDec=0.01, synPermActiveInc=0.2, synPermConnected=0.11,) random.seed(seed) np.random.seed(seed) # Build up training set with numTrainingRecords patterns inputs = [] # holds post-encoded input patterns for i in xrange(numTrainingRecords): inputVector = np.zeros(n, dtype=realDType) inputVector [random.sample(xrange(n), w)] = 1 inputs.append(inputVector) # Train each SP with identical inputs startTime = time.time() random.seed(seed) np.random.seed(seed) for i in xrange(numTrainingRecords): if spVerbosity > 0: print "Input #%d" % i # TODO: See https://github.com/numenta/nupic/issues/2072 encodedInput = inputs[i] decodedOutput = np.zeros(columnDimensions) spLearnOnly.compute(encodedInput, learn=True, activeArray=decodedOutput) random.seed(seed) np.random.seed(seed) for i in xrange(numTrainingRecords): if spVerbosity > 0: print "Input #%d" % i # TODO: See https://github.com/numenta/nupic/issues/2072 encodedInput = inputs[i] decodedOutput = np.zeros(columnDimensions) spLearnInfer.compute(encodedInput, learn=True, activeArray=decodedOutput) print "\nElapsed time: %.2f seconds\n" % (time.time() - startTime) # Test that both SP"s are identical by checking learning stats # A more in depth test would check all the coincidences, duty cycles, etc. # ala tpDiff # Edit: spDiff has been written as an in depth tester of the spatial pooler learnOnlyStats = spLearnOnly.getLearningStats() learnInferStats = spLearnInfer.getLearningStats() success = True # Check that the two spatial poolers are equivalent after the same training. success = success and spDiff(spLearnInfer, spLearnOnly) self.assertTrue(success) # Make sure that the pickled and loaded SPs are equivalent. spPickle = pickle.dumps(spLearnOnly, protocol=0) spLearnOnlyLoaded = pickle.loads(spPickle) success = success and spDiff(spLearnOnly, spLearnOnlyLoaded) self.assertTrue(success) for k in learnOnlyStats.keys(): if learnOnlyStats[k] != learnInferStats[k]: success = False print "Stat", k, "is different:", learnOnlyStats[k], learnInferStats[k] self.assertTrue(success) if success: print "Test succeeded"
# ------- # A column connects to a subset of the input vector (specified # by both the potentialRadius and potentialPct). The overlap score # for a column is the number of connections to the input that become # active when presented with a vector. When learning is 'on' in the SP, # the active connections are reinforced, whereas those inactive are # depressed (according to parameters synPermActiveInc and synPermInactiveDec. # In order for the SP to create a sparse representation of the input, it # will select a small percentage (usually 2%) of its most active columns, # ie. columns with the largest overlap score. # In this first part, we will create a histogram showing the overlap scores # of the Spatial Pooler (SP) after feeding it with a random binary # input. As well, the histogram will show the scores of those columns # that are chosen to build the sparse representation of the input. sp.compute(inputArray, False, activeCols) overlaps = sp.getOverlaps() activeColsScores = [] for i in activeCols.nonzero(): activeColsScores.append(overlaps[i]) print "" print "---------------------------------" print "Figure 1 shows an histogram of the overlap scores" print "from all the columns in the spatial pooler, as well as the" print "overlap scores of those columns that were selected to build a" print "sparse representation of the input (shown in green)." print "The SP chooses 2% of the columns with the largest overlap score" print "to make such sparse representation." print "---------------------------------" print ""
# fill encodings timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) consumeEncoder.encodeIntoArray(consumption, consumptionBits) encoding = numpy.concatenate( [timeOfDayBits, weekendBits, consumptionBits]) #ONE = {'id': count, 'input': consumption, 'bucket': bucketIdx, # 'output': consumptionBits.tolist()} #print ONE #REZ.append(ONE) # spatial pooling activeColumns = numpy.zeros(COL_WIDTH, numpy.int8) sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # temporal memory tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # classification bucketIdx = consumeEncoder.getBucketIndices(consumption)[0] ### #hamming[bucketIdx] = consumptionBits ### classifierResult = classifier.compute(recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx,
activeColumns2 = np.zeros(SpatialPoolerWidth) activeColumns3 = np.zeros(SpatialPoolerWidth) activeColumns4 = np.zeros(SpatialPoolerWidth) # Compare overlap of the input SDRs #dotproduct = numpy.dot(Graph1Binary, Graph2Binary)/(numpy.linalg.norm#(Graph1Binary)*numpy.linalg.norm(Graph2Binary)) # Find percent overlap of old vectors. #print('Percent Overlap of the Input Vectors: ' + str(round(dotproduct,5)*100) +'%' ) # Run the spatial pooling function for Triangle Square Circle for i in range(10): sp.compute(TCSGraph0Binary, True, activeColumns1) activeColumnIndices1 = np.nonzero(activeColumns1)[0] sp.compute(TCSGraph10Binary, True, activeColumns2) activeColumnIndices2 = np.nonzero(activeColumns2)[0] print('Spatial Pooler Output for Triangle Square Circle: ' + str(activeColumnIndices2)) # Run the spatial pooling function for the Circle Square for m in range(20): sp.compute(CSGraphBinary, True, activeColumns3) activeColumnIndices3 = np.nonzero(activeColumns3)[0] print('Spatial Pooler Output for Circle Square:' + str(activeColumnIndices3))
def HTM_AD( Data='Test', vars={'value': ['num']}, prec_param=5, pooler_out=2024, # Number of columns of the pooler output cell_col=5, # HTM cells per column W=72, # Window parameter W_prim=5, # Local window for anomaly detection likelihood eps=1e-6, # to Avoid by zero divisions athreshold=0.95): """ This function performs HTM based anomaly detection on a time series provided :param Data: :param vars: Possible values: num, tod, weekend :param prec_param: A parameter that defines how much precision the number encoder has The encoder precision depends on the variability of the data, The real precision is computed taking into account both the precision parameter and data std A high precision might mean a high error at predicting the variable value in noisy variables :param pooler_out: Number of columns of the pooler output :param cell_col: HTM cells per column :param W: Window parameter :param W_prim: Local window for anomaly detection likelihood :param eps: to Avoid by zero divisions :param athreshold: To classify based on anomaly likelihood whether there is an anomaly or not :return: The Data + 3 columns Anomaly: indicates the error of within the value predicted by the HTM network Anomaly_likelihood: indicates the likelihood of the data into being anomalous Anomaly_flag: classifies the data in anomalous vs non anomalous """ if Data == 'Test': # If there is not data available, simply loads the temperature benchmark dataset # Import data Data = pd.read_csv('anomaly_API/Data/sample.csv', parse_dates=True, index_col='timestamp') Data = Data.resample('H').bfill().interpolate() TODE = DateEncoder(timeOfDay=(21, 1)) WENDE = DateEncoder(weekend=21) var_encoders = set() # Spatial Pooler Parameters for x in vars: for y in vars[x]: if y == 'num': exec( "RDSE_" + x + " = RandomDistributedScalarEncoder(resolution=Data['" + x + "'].std()/prec_param)", locals(), globals()) var_encoders.add(Encoder(x, ["RDSE_" + x])) elif y == 'weekend': var_encoders.add(Encoder(x, ["WENDE"])) elif y == 'tod': var_encoders.add(Encoder(x, ["TODE"])) else: return {"error": "Variable encoder type is not recognized "} encoder_width = 0 # Computes encoder width for x in var_encoders: for y in x.encoders: exec("s = " + y + ".getWidth()", locals(), globals()) encoder_width += s SP = SpatialPooler( inputDimensions=encoder_width, columnDimensions=pooler_out, potentialPct=0.8, globalInhibition=True, numActiveColumnsPerInhArea=pooler_out // 50, # Gets 2% of the total area boostStrength=1.0, wrapAround=False) TM = TemporalMemory(columnDimensions=(pooler_out, ), cellsPerColumn=cell_col) Data['Anomaly'] = 0.0 Data['Anomaly_Likelihood'] = 0.0 # Train Spatial Pooler print("Spatial pooler learning") start = time.time() active_columns = np.zeros(pooler_out) for x in range(len(Data)): encoder = multiencode(var_encoders, Data, x) SP.compute(encoder, True, active_columns) end = time.time() print(end - start) # Temporal pooler print("Temporal pooler learning") start = time.time() A_score = np.zeros(len(Data)) for x in range(len(Data)): encoder = multiencode(var_encoders, Data, x) SP.compute(encoder, False, active_columns) col_index = active_columns.nonzero()[0] TM.compute(col_index, learn=True) if x > 0: inter = set(col_index).intersection(Prev_pred_col) inter_l = len(inter) active_l = len(col_index) A_score[x] = 1 - (inter_l / active_l) Data.iat[x, -2] = A_score[x] Prev_pred_col = list( set(x // cell_col for x in TM.getPredictiveCells())) end = time.time() print(end - start) AL_score = np.zeros(len(Data)) # Computes the likelihood of the anomaly for x in range(len(Data)): if x > 0: W_vec = A_score[max(0, x - W):x] W_prim_vec = A_score[max(0, x - W_prim):x] AL_score[x] = 1 - 2 * norm.sf( abs(np.mean(W_vec) - np.mean(W_prim_vec)) / max(np.std(W_vec), eps)) Data.iat[x, -1] = AL_score[x] Data['Anomaly_flag'] = athreshold < Data['Anomaly_Likelihood'] return Data
def testSPFile(): """ Run test on the data file - the file has records previously encoded. """ spSize = 2048 spSet = 40 poolPct = 0.5 pattern = [50, 1000] doLearn = True PLOT_PRECISION = 100.0 distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1)) inputs = [] #file = open('~/Desktop/ExperimentResults/sampleArtificial.csv', 'rb') #elemSize = 400 #numSet = 42 #file = open('~/Desktop/ExperimentResults/sampleDataBasilOneField.csv', 'rb') #elemSize = 499 #numSet = 7 outdir = '~/Desktop/ExperimentResults/Basil100x21' inputFile = outdir + '.csv' file = open(inputFile, 'rb') elemSize = 100 numSet = 21 reader = csv.reader(file) for row in reader: input = np.array(list(map(float, row)), dtype=realDType) if len(input.nonzero()[0]) != numSet: continue inputs.append(input.copy()) file.close() # Setup a SP sp = SpatialPooler(columnDimensions=(spSize, 1), inputDimensions=(1, elemSize), potentialRadius=elemSize / 2, numActiveColumnsPerInhArea=spSet, spVerbosity=0, stimulusThreshold=0, synPermConnected=0.10, seed=1, potentialPct=poolPct, globalInhibition=True) cleanPlot = False doLearn = False print('Finished reading file, inputs/outputs to process =', len(inputs)) size = len(inputs) for iter in range(100): print('Iteration', iter) # Learn if iter != 0: for learnRecs in range(pattern[0]): # TODO: See https://github.com/numenta/nupic/issues/2072 ind = np.random.random_integers(0, size - 1, 1)[0] sp.compute(inputs[ind], learn=True, activeArray=outputs[ind]) # Test for _ in range(pattern[1]): rand1 = np.random.random_integers(0, size - 1, 1)[0] rand2 = np.random.random_integers(0, size - 1, 1)[0] sp.compute(inputs[rand1], learn=False, activeArray=output1) sp.compute(inputs[rand2], learn=False, activeArray=output2) outDist = (abs(output1 - output2) > 0.1) intOutDist = int(outDist.sum() / 2 + 0.1) inDist = (abs(inputs[rand1] - inputs[rand2]) > 0.1) intInDist = int(inDist.sum() / 2 + 0.1) if intInDist != numSet or intOutDist != spSet: print(rand1, rand2, '-', intInDist, intOutDist) x = int(PLOT_PRECISION * intOutDist / spSet) y = int(PLOT_PRECISION * intInDist / numSet) if distribMatrix[x, y] < 0.1: distribMatrix[x, y] = 3 else: if distribMatrix[x, y] < 10: distribMatrix[x, y] += 1 if True: plt.imshow(distribMatrix, origin='lower', interpolation="nearest") plt.ylabel('SP (%d/%d) distance in pct' % (spSize, spSet)) plt.xlabel('Input (%d/%d) distance in pct' % (elemSize, numSet)) title = 'SP distribution' title += ', iter = %d' % iter title += ', Pct =%f' % poolPct plt.suptitle(title, fontsize=12) #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosArtData', '%s' % iter)) plt.savefig(os.path.join(outdir, '%s' % iter)) plt.clf() distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))
def testSPNew(): """ New version of the test""" elemSize = 400 numSet = 42 addNear = True numRecords = 1000 wantPlot = False poolPct = 0.5 itr = 5 pattern = [60, 1000] doLearn = True start = 1 learnIter = 0 noLearnIter = 0 numLearns = 0 numTests = 0 numIter = 1 numGroups = 1000 PLOT_PRECISION = 100.0 distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1)) inputs = generateRandomInput(numGroups, elemSize, numSet) # Setup a SP sp = SpatialPooler(columnDimensions=(2048, 1), inputDimensions=(1, elemSize), potentialRadius=elemSize / 2, numActiveColumnsPerInhArea=40, spVerbosity=0, stimulusThreshold=0, synPermConnected=0.12, seed=1, potentialPct=poolPct, globalInhibition=True) cleanPlot = False for i in range(numRecords): input1 = getRandomWithMods(inputs, 4) if i % 2 == 0: input2 = getRandomWithMods(inputs, 4) else: input2 = input1.copy() input2 = modifyBits(input2, 21) inDist = (abs(input1 - input2) > 0.1) intInDist = int(inDist.sum() / 2 + 0.1) #print intInDist if start == 0: doLearn = True learnIter += 1 if learnIter == pattern[start]: numLearns += 1 start = 1 noLearnIter = 0 elif start == 1: doLearn = False noLearnIter += 1 if noLearnIter == pattern[start]: numTests += 1 start = 0 learnIter = 0 cleanPlot = True # TODO: See https://github.com/numenta/nupic/issues/2072 sp.compute(input1, learn=doLearn, activeArray=output1) sp.compute(input2, learn=doLearn, activeArray=output2) time.sleep(0.001) outDist = (abs(output1 - output2) > 0.1) intOutDist = int(outDist.sum() / 2 + 0.1) if not doLearn and intOutDist < 2 and intInDist > 10: """ sp.spVerbosity = 10 # TODO: See https://github.com/numenta/nupic/issues/2072 sp.compute(input1, learn=doLearn, activeArray=output1) sp.compute(input2, learn=doLearn, activeArray=output2) sp.spVerbosity = 0 print 'Elements has very small SP distance: %d' % intOutDist print output1.nonzero() print output2.nonzero() print sp._firingBoostFactors[output1.nonzero()[0]] print sp._synPermBoostFactors[output1.nonzero()[0]] print 'Input elements distance is %d' % intInDist print input1.nonzero() print input2.nonzero() sys.stdin.readline() """ if not doLearn: x = int(PLOT_PRECISION * intOutDist / 40.0) y = int(PLOT_PRECISION * intInDist / 42.0) if distribMatrix[x, y] < 0.1: distribMatrix[x, y] = 3 else: if distribMatrix[x, y] < 10: distribMatrix[x, y] += 1 #print i # If we don't want a plot, just continue if wantPlot and cleanPlot: plt.imshow(distribMatrix, origin='lower', interpolation="nearest") plt.ylabel('SP (2048/40) distance in %') plt.xlabel('Input (400/42) distance in %') title = 'SP distribution' #if doLearn: # title += ', leaning ON' #else: # title += ', learning OFF' title += ', learn sets = %d' % numLearns title += ', test sets = %d' % numTests title += ', iter = %d' % numIter title += ', groups = %d' % numGroups title += ', Pct =%f' % poolPct plt.suptitle(title, fontsize=12) #plt.show() plt.savefig( os.path.join('~/Desktop/ExperimentResults/videosNew', '%s' % i)) plt.clf() distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1)) cleanPlot = False
def testSPFile(): """ Run test on the data file - the file has records previously encoded. """ spSize = 2048 spSet = 40 poolPct = 0.5 pattern = [50, 1000] doLearn = True PLOT_PRECISION = 100.0 distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1)) inputs = [] #file = open('~/Desktop/ExperimentResults/sampleArtificial.csv', 'rb') #elemSize = 400 #numSet = 42 #file = open('~/Desktop/ExperimentResults/sampleDataBasilOneField.csv', 'rb') #elemSize = 499 #numSet = 7 outdir = '~/Desktop/ExperimentResults/Basil100x21' inputFile = outdir+'.csv' file = open(inputFile, 'rb') elemSize = 100 numSet = 21 reader = csv.reader(file) for row in reader: input = np.array(map(float, row), dtype=realDType) if len(input.nonzero()[0]) != numSet: continue inputs.append(input.copy()) file.close() # Setup a SP sp = SpatialPooler( columnDimensions=(spSize, 1), inputDimensions=(1, elemSize), potentialRadius=elemSize/2, numActiveColumnsPerInhArea=spSet, spVerbosity=0, stimulusThreshold=0, synPermConnected=0.10, seed=1, potentialPct=poolPct, globalInhibition=True ) cleanPlot = False doLearn = False print 'Finished reading file, inputs/outputs to process =', len(inputs) size = len(inputs) for iter in xrange(100): print 'Iteration', iter # Learn if iter != 0: for learnRecs in xrange(pattern[0]): # TODO: See https://github.com/numenta/nupic/issues/2072 ind = np.random.random_integers(0, size-1, 1)[0] sp.compute(inputs[ind], learn=True, activeArray=outputs[ind]) # Test for _ in xrange(pattern[1]): rand1 = np.random.random_integers(0, size-1, 1)[0] rand2 = np.random.random_integers(0, size-1, 1)[0] sp.compute(inputs[rand1], learn=False, activeArray=output1) sp.compute(inputs[rand2], learn=False, activeArray=output2) outDist = (abs(output1-output2) > 0.1) intOutDist = int(outDist.sum()/2+0.1) inDist = (abs(inputs[rand1]-inputs[rand2]) > 0.1) intInDist = int(inDist.sum()/2+0.1) if intInDist != numSet or intOutDist != spSet: print rand1, rand2, '-', intInDist, intOutDist x = int(PLOT_PRECISION*intOutDist/spSet) y = int(PLOT_PRECISION*intInDist/numSet) if distribMatrix[x, y] < 0.1: distribMatrix[x, y] = 3 else: if distribMatrix[x, y] < 10: distribMatrix[x, y] += 1 if True: plt.imshow(distribMatrix, origin='lower', interpolation = "nearest") plt.ylabel('SP (%d/%d) distance in pct' % (spSize, spSet)) plt.xlabel('Input (%d/%d) distance in pct' % (elemSize, numSet)) title = 'SP distribution' title += ', iter = %d' % iter title += ', Pct =%f' % poolPct plt.suptitle(title, fontsize=12) #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosArtData', '%s' % iter)) plt.savefig(os.path.join(outdir, '%s' % iter)) plt.clf() distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
# Array which contains the output of the spatial pooler activeColumns1 = numpy.zeros(SpatialPoolerWidth) activeColumns2 = numpy.zeros(SpatialPoolerWidth) dotproduct = numpy.dot(Graph1Binary, Graph2Binary) / ( numpy.linalg.norm(Graph1Binary) * numpy.linalg.norm(Graph2Binary)) # Find percent overlap of old vectors. print('Percent Overlap of the Input Vectors: ' + str(round(dotproduct, 5) * 100) + '%') # Run the spatial pooling function sp.compute(Graph1Binary, True, activeColumns1) activeColumnIndices1 = numpy.nonzero(activeColumns1)[0] print('Spatial Pooler Output for Graph 1: ' + str(activeColumnIndices1)) sp.compute(Graph2Binary, True, activeColumns2) activeColumnIndices2 = numpy.nonzero(activeColumns2)[0] print('Spatial Pooler Output for Graph 2:' + str(activeColumnIndices2)) # find percent overlap of spatially pooled vectors. dotproduct = numpy.dot(activeColumns1, activeColumns2) / ( numpy.linalg.norm(activeColumns1) * numpy.linalg.norm(activeColumns2)) print('Percent Overlap of the SP Output Vectors: ' + str(round(dotproduct, 5) * 100) + '%')
boostStrength=3.0, # Random number generator seed. seed=1956, # Determines if inputs at the beginning and end of an input dimension should # be considered neighbors when mapping columns to inputs. wrapAround=False) # Array which contains the output of the spatial pooler for layer 1 activeColumns = np.zeros(SpatialPoolerWidth1) #Push all image SDRs through the SP layer 1 SPLayer1Out = np.array([]) tempList = [] #print('L1 TriSqrCrcl Out: ') for i in range(numInputs): sp.compute(arrayOfSDRs[i, :], True, activeColumns) tempList.append(activeColumns) #Prepare the output for printing activeColumnIndices = np.nonzero(activeColumns) #print(activeColumnIndices[0]) SPLayer1Out = np.stack(tempList, axis=0) #=== Layer 2 SP Setup EncodingWidth, SpatialPoolerWidth2 = SpatialPoolerWidth1, 400 sp = SpatialPooler( # How large the input encoding will be. inputDimensions=(EncodingWidth), # How many mini-columns will be in the Spatial Pooler. columnDimensions=(SpatialPoolerWidth2),
def main(argv): args, _ = parse_argv() data_set = args.data_set num_data_points = args.num_data_points sp_type = args.pooler_type num_epochs = args.num_epochs batch_size = args.batch_size experiment_id = args.experiment_id seed = args.seed the_scripts_path = os.path.dirname(os.path.realpath(__file__)) # script directory sp_params_dict = json.load(open(the_scripts_path + "/params.json")) if args.sp_params is not None: sp_params = sp_params_dict[sp_type][args.sp_params] else: sp_params = sp_params_dict[sp_type][data_set] sp_params["seed"] = seed if experiment_id is None: experiment_id = random_id(5) path = the_scripts_path + "/../results/{}_pooler_{}_{}/".format(sp_type, data_set,experiment_id) os.makedirs(os.path.dirname(path)) print( "Experiment directory:\n\"{}\"\n" .format(path)) X, _, X_test, _ = load_data(data_set, num_inputs = num_data_points) n, m = get_shape(sp_params) X = X[:,:num_data_points] d = X.shape[1] results = { "inputs" : [], "outputs" : [], "feedforward" : []} #################################################### # # Old Spatial Pooler # #################################################### if sp_type == "ordinary": pooler = OldSpatialPooler(**sp_params) print( "Training ordinary pooler:\n") # "Fit" the model to the training data for epoch in range(num_epochs): Y = np.zeros((n,d)) perm = np.random.permutation(d) for t in range(d): sys.stdout.flush() sys.stdout.write( "\r{}/{} {}/{}" .format(num_epochs, epoch + 1, d, t + 1)) x = X[:,perm[t]] y = Y[:, t] pooler.compute(x, True, y) results["inputs"].append(X) results["outputs"].append(Y) results["feedforward"].append(get_permanence_vals(pooler)) #################################################### # # New Spatial Pooler with # learned lateral inhibitory connections # ##################################################### elif sp_type == "lateral": pooler = LateralPooler(**sp_params) sys.stdout.write( "Training dynamic lateral pooler:\n") collect_feedforward = ModelInspector(lambda pooler: pooler.feedforward.copy(), on_batch = False ) # collect_lateral = ModelInspector(lambda pooler: pooler.inhibitory.copy(), on_batch = False ) training_log = OutputCollector() print_training_status = Logger() # "Fit" the model to the training datasets pooler.fit(X, batch_size=batch_size, num_epochs=num_epochs, initial_epoch=0, callbacks=[collect_feedforward, training_log, print_training_status]) results["inputs"] = training_log.get_inputs() results["outputs"] = training_log.get_outputs() results["feedforward"] = collect_feedforward.get_results() # results["lateral"] = collect_lateral.get_results() dump_dict(path, sp_params) dump_results(path, results) print( "\nDone.\n")
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] timeOfDayEncoder = DateEncoder( timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"]) weekendEncoder = DateEncoder( weekend=enParams["timestamp_weekend"]["weekend"]) CtEncoder = RandomDistributedScalarEncoder(enParams["Ct"]["resolution"]) ZIP_10467Encoder = RandomDistributedScalarEncoder( enParams["ZIP_10467"]["resolution"]) # ZIP_10462Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10462"]["resolution"]) # ZIP_10475Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10475"]["resolution"]) # ZIP_10466Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10466"]["resolution"]) # ZIP_10469Encoder = RandomDistributedScalarEncoder(enParams["ZIP_10469"]["resolution"]) # DEPT_11Encoder = RandomDistributedScalarEncoder(enParams["DEPT_11"]["resolution"]) # DEPT_24Encoder = RandomDistributedScalarEncoder(enParams["DEPT_24"]["resolution"]) # DEPT_41Encoder = RandomDistributedScalarEncoder(enParams["DEPT_41"]["resolution"]) # DEPT_34Encoder = RandomDistributedScalarEncoder(enParams["DEPT_34"]["resolution"]) # DEPT_31Encoder = RandomDistributedScalarEncoder(enParams["DEPT_31"]["resolution"]) # DEPT_60Encoder = RandomDistributedScalarEncoder(enParams["DEPT_60"]["resolution"]) # AGE_0_9Encoder = RandomDistributedScalarEncoder(enParams["AGE_0_9"]["resolution"]) # AGE_10_19Encoder = RandomDistributedScalarEncoder(enParams["AGE_10_19"]["resolution"]) # AGE_20_29Encoder = RandomDistributedScalarEncoder(enParams["AGE_20_29"]["resolution"]) # AGE_30_39Encoder = RandomDistributedScalarEncoder(enParams["AGE_30_39"]["resolution"]) # AGE_40_49Encoder = RandomDistributedScalarEncoder(enParams["AGE_40_49"]["resolution"]) # AGE_50_59Encoder = RandomDistributedScalarEncoder(enParams["AGE_50_59"]["resolution"]) # AGE_60_69Encoder = RandomDistributedScalarEncoder(enParams["AGE_60_69"]["resolution"]) # AGE_70_79Encoder = RandomDistributedScalarEncoder(enParams["AGE_70_79"]["resolution"]) # AGE_80_89Encoder = RandomDistributedScalarEncoder(enParams["AGE_80_89"]["resolution"]) # AGE_90_99Encoder = RandomDistributedScalarEncoder(enParams["AGE_90_99"]["resolution"]) # DIST_1_7Encoder = RandomDistributedScalarEncoder(enParams["DIST_1_7"]["resolution"]) # DIST_8_14Encoder = RandomDistributedScalarEncoder(enParams["DIST_8_14"]["resolution"]) # DIST_15_21Encoder = RandomDistributedScalarEncoder(enParams["DIST_15_21"]["resolution"]) # DIST_22_28Encoder = RandomDistributedScalarEncoder(enParams["DIST_22_28"]["resolution"]) # DIST_29_35Encoder = RandomDistributedScalarEncoder(enParams["DIST_29_35"]["resolution"]) # DIST_36_42Encoder = RandomDistributedScalarEncoder(enParams["DIST_36_42"]["resolution"]) # DIST_43_49Encoder = RandomDistributedScalarEncoder(enParams["DIST_43_49"]["resolution"]) # DIST_50_56Encoder = RandomDistributedScalarEncoder(enParams["DIST_50_56"]["resolution"]) # DIST_57_63Encoder = RandomDistributedScalarEncoder(enParams["DIST_57_63"]["resolution"]) # DIST_64_70Encoder = RandomDistributedScalarEncoder(enParams["DIST_64_70"]["resolution"]) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + CtEncoder.getWidth() * 2) sp = SpatialPooler( inputDimensions=(encodingWidth, ), columnDimensions=(spParams["columnCount"], ), potentialPct=spParams["potentialPct"], potentialRadius=encodingWidth, globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], seed=spParams["seed"], wrapAround=True) tm = TemporalMemory( columnDimensions=(tmParams["columnCount"], ), cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"]) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME) for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%Y-%m-%d %H:%M:%S") # Convert data value string into float. Ct = float(record[1]) ZIP_10467 = float(record[2]) # ZIP_10462 = float(record[3]) # ZIP_10475 = float(record[4]) # ZIP_10466 = float(record[5]) # ZIP_10469 = float(record[6]) # DEPT_11 = float(record[7]) # DEPT_24 = float(record[8]) # DEPT_41 = float(record[9]) # DEPT_34 = float(record[10]) # DEPT_31 = float(record[11]) # DEPT_60 = float(record[12]) # AGE_0_9 = float(record[13]) # AGE_10_19 = float(record[14]) # AGE_20_29 = float(record[15]) # AGE_30_39 = float(record[16]) # AGE_40_49 = float(record[17]) # AGE_50_59 = float(record[18]) # AGE_60_69 = float(record[19]) # AGE_70_79 = float(record[20]) # AGE_80_89 = float(record[21]) # AGE_90_99 = float(record[22]) # DIST_1_7 = float(record[23]) # DIST_8_14 = float(record[24]) # DIST_15_21 = float(record[25]) # DIST_22_28 = float(record[26]) # DIST_29_35 = float(record[27]) # DIST_36_42 = float(record[28]) # DIST_43_49 = float(record[29]) # DIST_50_56 = float(record[30]) # DIST_57_63 = float(record[31]) # DIST_64_70 = float(record[31]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) CtBits = numpy.zeros(CtEncoder.getWidth()) ZIP_10467Bits = numpy.zeros(ZIP_10467Encoder.getWidth()) # ZIP_10462Bits = numpy.zeros(ZIP_10462Encoder.getWidth()) # ZIP_10475Bits = numpy.zeros(ZIP_10475Encoder.getWidth()) # ZIP_10466Bits = numpy.zeros(ZIP_10466Encoder.getWidth()) # ZIP_10469Bits = numpy.zeros(ZIP_10469Encoder.getWidth()) # DEPT_11Bits = numpy.zeros(DEPT_11Encoder.getWidth()) # DEPT_24Bits = numpy.zeros(DEPT_24Encoder.getWidth()) # DEPT_41Bits = numpy.zeros(DEPT_41Encoder.getWidth()) # DEPT_34Bits = numpy.zeros(DEPT_34Encoder.getWidth()) # DEPT_31Bits = numpy.zeros(DEPT_31Encoder.getWidth()) # DEPT_60Bits = numpy.zeros(DEPT_60Encoder.getWidth()) # AGE_0_9Bits = numpy.zeros(AGE_0_9Encoder.getWidth()) # AGE_10_19Bits = numpy.zeros(AGE_10_19Encoder.getWidth()) # AGE_20_29Bits = numpy.zeros(AGE_20_29Encoder.getWidth()) # AGE_30_39Bits = numpy.zeros(AGE_30_39Encoder.getWidth()) # AGE_40_49Bits = numpy.zeros(AGE_40_49Encoder.getWidth()) # AGE_50_59Bits = numpy.zeros(AGE_50_59Encoder.getWidth()) # AGE_60_69Bits = numpy.zeros(AGE_60_69Encoder.getWidth()) # AGE_70_79Bits = numpy.zeros(AGE_70_79Encoder.getWidth()) # AGE_80_89Bits = numpy.zeros(AGE_80_89Encoder.getWidth()) # AGE_90_99Bits = numpy.zeros(AGE_90_99Encoder.getWidth()) # DIST_1_7Bits = numpy.zeros(DIST_1_7Encoder.getWidth()) # DIST_8_14Bits = numpy.zeros(DIST_8_14Encoder.getWidth()) # DIST_15_21Bits = numpy.zeros(DIST_15_21Encoder.getWidth()) # DIST_22_28Bits = numpy.zeros(DIST_22_28Encoder.getWidth()) # DIST_29_35Bits = numpy.zeros(DIST_29_35Encoder.getWidth()) # DIST_36_42Bits = numpy.zeros(DIST_36_42Encoder.getWidth()) # DIST_43_49Bits = numpy.zeros(DIST_43_49Encoder.getWidth()) # DIST_50_56Bits = numpy.zeros(DIST_50_56Encoder.getWidth()) # DIST_57_63Bits = numpy.zeros(DIST_57_63Encoder.getWidth()) # DIST_64_70Bits = numpy.zeros(DIST_64_70Encoder.getWidth()) # Now we call the encoders to create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) CtEncoder.encodeIntoArray(Ct, CtBits) ZIP_10467Encoder.encodeIntoArray(ZIP_10467, ZIP_10467Bits) # ZIP_10462Encoder.encodeIntoArray(ZIP_10462, ZIP_10462Bits) # ZIP_10475Encoder.encodeIntoArray(ZIP_10475, ZIP_10475Bits) # ZIP_10466Encoder.encodeIntoArray(ZIP_10466, ZIP_10466Bits) # ZIP_10469Encoder.encodeIntoArray(ZIP_10469, ZIP_10469Bits) # DEPT_11Encoder.encodeIntoArray(DEPT_11, DEPT_11Bits) # DEPT_24Encoder.encodeIntoArray(DEPT_24, DEPT_24Bits) # DEPT_41Encoder.encodeIntoArray(DEPT_41, DEPT_41Bits) # DEPT_34Encoder.encodeIntoArray(DEPT_34, DEPT_34Bits) # DEPT_31Encoder.encodeIntoArray(DEPT_31, DEPT_31Bits) # DEPT_60Encoder.encodeIntoArray(DEPT_60, DEPT_60Bits) # AGE_0_9Encoder.encodeIntoArray(AGE_0_9, AGE_0_9Bits) # AGE_10_19Encoder.encodeIntoArray(AGE_10_19, AGE_10_19Bits) # AGE_20_29Encoder.encodeIntoArray(AGE_20_29, AGE_20_29Bits) # AGE_30_39Encoder.encodeIntoArray(AGE_30_39, AGE_30_39Bits) # AGE_40_49Encoder.encodeIntoArray(AGE_40_49, AGE_40_49Bits) # AGE_50_59Encoder.encodeIntoArray(AGE_50_59, AGE_50_59Bits) # AGE_60_69Encoder.encodeIntoArray(AGE_60_69, AGE_60_69Bits) # AGE_70_79Encoder.encodeIntoArray(AGE_70_79, AGE_70_79Bits) # AGE_80_89Encoder.encodeIntoArray(AGE_80_89, AGE_80_89Bits) # AGE_90_99Encoder.encodeIntoArray(AGE_90_99, AGE_90_99Bits) # DIST_1_7Encoder.encodeIntoArray(DIST_1_7, DIST_1_7Bits) # DIST_8_14Encoder.encodeIntoArray(DIST_8_14, DIST_8_14Bits) # DIST_15_21Encoder.encodeIntoArray(DIST_15_21, DIST_15_21Bits) # DIST_22_28Encoder.encodeIntoArray(DIST_22_28, DIST_22_28Bits) # DIST_29_35Encoder.encodeIntoArray(DIST_29_35, DIST_29_35Bits) # DIST_36_42Encoder.encodeIntoArray(DIST_36_42, DIST_36_42Bits) # DIST_43_49Encoder.encodeIntoArray(DIST_43_49, DIST_43_49Bits) # DIST_50_56Encoder.encodeIntoArray(DIST_50_56, DIST_50_56Bits) # DIST_57_63Encoder.encodeIntoArray(DIST_57_63, DIST_57_63Bits) # DIST_64_70Encoder.encodeIntoArray(DIST_64_70, DIST_64_70Bits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, CtBits, ZIP_10467Bits]) # encoding = numpy.concatenate( # [timeOfDayBits, weekendBits, CtBits, # ZIP_10467Bits, ZIP_10462Bits, ZIP_10475Bits, ZIP_10466Bits, ZIP_10469Bits, # DEPT_11Bits, DEPT_24Bits, DEPT_41Bits, DEPT_34Bits, DEPT_31Bits, # DEPT_60Bits, AGE_0_9Bits, AGE_10_19Bits, AGE_20_29Bits, AGE_30_39Bits, # AGE_40_49Bits, AGE_50_59Bits, AGE_60_69Bits, AGE_70_79Bits, AGE_80_89Bits, # AGE_90_99Bits, DIST_1_7Bits, DIST_8_14Bits, DIST_15_21Bits, DIST_22_28Bits, # DIST_29_35Bits, DIST_36_42Bits, DIST_43_49Bits, DIST_50_56Bits, DIST_57_63Bits, # DIST_64_70Bits]) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = CtEncoder.getBucketIndices(Ct)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute(recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": Ct }, learn=True, infer=True) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted(zip( classifierResult[1], classifierResult["actualValues"]), reverse=True)[0] # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) # results.append([oneStep, oneStepConfidence * 100, None, None]) results.append([record[0], Ct, oneStep, oneStepConfidence * 100]) output.write(record[0], Ct, oneStep, oneStepConfidence * 100) output.close() return results
encoder = ScalarEncoder(21, -1.0, 1.0, n=inputDimensions[0]) sp = SpatialPooler(inputDimensions=inputDimensions, columnDimensions=columnDimensions, globalInhibition=True, numActiveColumnsPerInhArea=21) tm = TemporalMemory(columnDimensions=columnDimensions) c = SDRClassifier(steps=[1], alpha=0.1, actValueAlpha=0.1, verbosity=0) x_true = x[1:] x_predict = np.zeros(len(x) - 1) for i, xi in tqdm(enumerate(x[:-1])): encoded = encoder.encode(xi) bucketIdx = np.where(encoded > 0)[0][0] spd = np.zeros(columnDimensions[0]) sp.compute(encoded, True, spd) active_indices = np.where(spd > 0)[0] tm.compute(active_indices) active_cell_indices = tm.getActiveCells() predictive_cell_indices = tm.getPredictiveCells() patternNZ = np.asarray(active_cell_indices) patternNZ = np.append(patternNZ, predictive_cell_indices) patternNZ = patternNZ.astype(np.int) patternNZ = list(set(patternNZ)) result = c.compute(recordNum=i, patternNZ=patternNZ, classification={ "bucketIdx": bucketIdx, "actValue": xi
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] timeOfDayEncoder = DateEncoder( timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"]) weekendEncoder = DateEncoder( weekend=enParams["timestamp_weekend"]["weekend"]) scalarEncoder = RandomDistributedScalarEncoder( enParams["consumption"]["resolution"]) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + scalarEncoder.getWidth()) sp = SpatialPooler( # How large the input encoding will be. inputDimensions=(encodingWidth, ), # How many mini-columns will be in the Spatial Pooler. columnDimensions=(spParams["columnCount"], ), # What percent of the columns"s receptive field is available for potential # synapses? potentialPct=spParams["potentialPct"], # Potential radius should be set to the input size if there is global # inhibition. potentialRadius=encodingWidth, # This means that the input space has no topology. globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], # Roughly 2%, giving that there is only one inhibition area because we have # turned on globalInhibition (40 / 2048 = 0.0195) numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], # How quickly synapses grow and degrade. synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], # boostStrength controls the strength of boosting. Boosting encourages # efficient usage of SP columns. boostStrength=spParams["boostStrength"], # Random number generator seed. seed=spParams["seed"], # TODO: is this useful? # Determines if inputs at the beginning and end of an input dimension should # be considered neighbors when mapping columns to inputs. wrapAround=True) tm = TemporalMemory( # Must be the same dimensions as the SP columnDimensions=(tmParams["columnCount"], ), # How many cells in each mini-column. cellsPerColumn=tmParams["cellsPerColumn"], # A segment is active if it has >= activationThreshold connected synapses # that are active due to infActiveState activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], # TODO: This comes from the SP params, is this normal connectedPermanence=spParams["synPermConnected"], # Minimum number of active synapses for a segment to be considered during # search for the best-matching segments. minThreshold=tmParams["minThreshold"], # The max number of synapses added to a segment during learning maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"]) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) consumptionBits = numpy.zeros(scalarEncoder.getWidth()) # Now we call the encoders create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) scalarEncoder.encodeIntoArray(consumption, consumptionBits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, consumptionBits]) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(consumption)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute(recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": consumption }, learn=True, infer=True) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted(zip( classifierResult[1], classifierResult["actualValues"]), reverse=True)[0] print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) results.append([oneStep, oneStepConfidence * 100, None, None]) return results
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] timeOfDayEncoder = DateEncoder( timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"]) weekendEncoder = DateEncoder( weekend=enParams["timestamp_weekend"]["weekend"]) scalarEncoder = RandomDistributedScalarEncoder( enParams["consumption"]["resolution"]) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + scalarEncoder.getWidth()) sp = SpatialPooler( # How large the input encoding will be. inputDimensions=(encodingWidth), # How many mini-columns will be in the Spatial Pooler. columnDimensions=(spParams["columnCount"]), # What percent of the columns"s receptive field is available for potential # synapses? potentialPct=spParams["potentialPct"], # This means that the input space has no topology. globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], # Roughly 2%, giving that there is only one inhibition area because we have # turned on globalInhibition (40 / 2048 = 0.0195) numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], # How quickly synapses grow and degrade. synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], # boostStrength controls the strength of boosting. Boosting encourages # efficient usage of SP columns. boostStrength=spParams["boostStrength"], # Random number generator seed. seed=spParams["seed"], # TODO: is this useful? # Determines if inputs at the beginning and end of an input dimension should # be considered neighbors when mapping columns to inputs. wrapAround=False ) tm = TemporalMemory( # Must be the same dimensions as the SP columnDimensions=(tmParams["columnCount"],), # How many cells in each mini-column. cellsPerColumn=tmParams["cellsPerColumn"], # A segment is active if it has >= activationThreshold connected synapses # that are active due to infActiveState activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], # TODO: This comes from the SP params, is this normal connectedPermanence=spParams["synPermConnected"], # Minimum number of active synapses for a segment to be considered during # search for the best-matching segments. minThreshold=tmParams["minThreshold"], # The max number of synapses added to a segment during learning maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"] ) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) consumptionBits = numpy.zeros(scalarEncoder.getWidth()) # Now we call the encoders create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) scalarEncoder.encodeIntoArray(consumption, consumptionBits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, consumptionBits] ) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(consumption)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute( recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": consumption }, learn=True, infer=True ) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted( zip(classifierResult[1], classifierResult["actualValues"]), reverse=True )[0] print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) results.append([oneStep, oneStepConfidence * 100, None, None]) return results
def _runLearnInference(self, n=30, w=15, columnDimensions=2048, numActiveColumnsPerInhArea=40, spSeed=1951, spVerbosity=0, numTrainingRecords=100, seed=42): # Instantiate two identical spatial pooler. One will be used only for # learning. The other will be trained with identical records, but with # random inference calls thrown in spLearnOnly = SpatialPooler( columnDimensions=(columnDimensions, 1), inputDimensions=(1, n), potentialRadius=n / 2, numActiveColumnsPerInhArea=numActiveColumnsPerInhArea, spVerbosity=spVerbosity, seed=spSeed, synPermInactiveDec=0.01, synPermActiveInc=0.2, synPermConnected=0.11, ) spLearnInfer = SpatialPooler( columnDimensions=(columnDimensions, 1), inputDimensions=(1, n), potentialRadius=n / 2, numActiveColumnsPerInhArea=numActiveColumnsPerInhArea, spVerbosity=spVerbosity, seed=spSeed, synPermInactiveDec=0.01, synPermActiveInc=0.2, synPermConnected=0.11, ) random.seed(seed) np.random.seed(seed) # Build up training set with numTrainingRecords patterns inputs = [] # holds post-encoded input patterns for i in xrange(numTrainingRecords): inputVector = np.zeros(n, dtype=realDType) inputVector[random.sample(xrange(n), w)] = 1 inputs.append(inputVector) # Train each SP with identical inputs startTime = time.time() random.seed(seed) np.random.seed(seed) for i in xrange(numTrainingRecords): if spVerbosity > 0: print "Input #%d" % i # TODO: See https://github.com/numenta/nupic/issues/2072 encodedInput = inputs[i] decodedOutput = np.zeros(columnDimensions) spLearnOnly.compute(encodedInput, learn=True, activeArray=decodedOutput) random.seed(seed) np.random.seed(seed) for i in xrange(numTrainingRecords): if spVerbosity > 0: print "Input #%d" % i # TODO: See https://github.com/numenta/nupic/issues/2072 encodedInput = inputs[i] decodedOutput = np.zeros(columnDimensions) spLearnInfer.compute(encodedInput, learn=True, activeArray=decodedOutput) print "\nElapsed time: %.2f seconds\n" % (time.time() - startTime) # Test that both SP"s are identical by checking learning stats # A more in depth test would check all the coincidences, duty cycles, etc. # ala tpDiff # Edit: spDiff has been written as an in depth tester of the spatial pooler learnOnlyStats = spLearnOnly.getLearningStats() learnInferStats = spLearnInfer.getLearningStats() success = True # Check that the two spatial poolers are equivalent after the same training. success = success and spDiff(spLearnInfer, spLearnOnly) self.assertTrue(success) # Make sure that the pickled and loaded SPs are equivalent. spPickle = pickle.dumps(spLearnOnly, protocol=0) spLearnOnlyLoaded = pickle.loads(spPickle) success = success and spDiff(spLearnOnly, spLearnOnlyLoaded) self.assertTrue(success) for k in learnOnlyStats.keys(): if learnOnlyStats[k] != learnInferStats[k]: success = False print "Stat", k, "is different:", learnOnlyStats[ k], learnInferStats[k] self.assertTrue(success) if success: print "Test succeeded"
dd = 0 for i, linha in enumerate(teste): ##################################################### scalar_encoder.encodeIntoArray(linha[1], bits_scalar) time_encoder.encodeIntoArray(linha[0], bits_time) encoder_output = np.concatenate((bits_time, bits_scalar)) #################################################### sdr_output = np.zeros(N_COLUMNS) sp.compute(encoder_output, True, sdr_output) active_columns = np.nonzero(sdr_output)[0] #################################################### tm.compute(active_columns, learn=True) #################################################### anom_score[i] = anomaly_score.compute(tm.getActiveCells(), tm.getPredictiveCells()) anom_logscore[i] = anomaly_likelihood.computeLogLikelihood(anom_score[i]) if i % 100 == 0:
class Entity(): def __init__(self, columnCount, InputEncoderParams, toL4ConnectorParamsI, toL4ConnectorParamsII, toL5ConnectorParams, toD1ConnectorParams, toD2ConnectorParams, L4Params, L5Params, k, D1Params, D2Params): self.columnCount = columnCount self.toL4ConnectorParamsI = toL4ConnectorParamsI self.toL4ConnectorParamsII = toL4ConnectorParamsII self.toL5ConnectorParams = toL5ConnectorParams self.toD1ConnectorParams = toD1ConnectorParams self.toD2ConnectorParams = toD2ConnectorParams self.L4Params = L4Params self.L5Params = L5Params self.k = k self.D1Params = D1Params self.D2Params = D2Params self.learning = False #encoder from nupic.encoders import MultiEncoder self.InputEncoder = MultiEncoder() self.InputEncoder.addMultipleEncoders(InputEncoderParams) print "Encoder Online" #spatialPoolers from nupic.algorithms.spatial_pooler import SpatialPooler self.toL4ConnectorI = SpatialPooler( inputDimensions=(toL4ConnectorParamsI["inputDimensions"], ), columnDimensions=(columnCount, ), potentialPct=toL4ConnectorParamsI["potentialPct"], globalInhibition=toL4ConnectorParamsI["globalInhibition"], localAreaDensity=toL4ConnectorParamsI["localAreaDensity"], numActiveColumnsPerInhArea=toL4ConnectorParamsI[ "numActiveColumnsPerInhArea"], synPermInactiveDec=toL4ConnectorParamsI["synPermInactiveDec"], synPermActiveInc=toL4ConnectorParamsI["synPermActiveInc"], synPermConnected=toL4ConnectorParamsI["synPermConnected"], boostStrength=toL4ConnectorParamsI["boostStrength"], seed=toL4ConnectorParamsI["seed"], wrapAround=toL4ConnectorParamsI["wrapAround"]) #this part sucks self.toL4ConnectorII = SpatialPooler( inputDimensions=(columnCount * 3, ), columnDimensions=(columnCount, ), potentialPct=toL4ConnectorParamsII["potentialPct"], globalInhibition=toL4ConnectorParamsII["globalInhibition"], localAreaDensity=toL4ConnectorParamsII["localAreaDensity"], numActiveColumnsPerInhArea=toL4ConnectorParamsII[ "numActiveColumnsPerInhArea"], synPermInactiveDec=toL4ConnectorParamsII["synPermInactiveDec"], synPermActiveInc=toL4ConnectorParamsII["synPermActiveInc"], synPermConnected=toL4ConnectorParamsII["synPermConnected"], boostStrength=toL4ConnectorParamsII["boostStrength"], seed=toL4ConnectorParamsII["seed"], wrapAround=toL4ConnectorParamsII["wrapAround"]) print "toL4Connector Online" self.toL5Connector = SpatialPooler( inputDimensions=(columnCount, ), columnDimensions=(columnCount, ), potentialPct=toL5ConnectorParams["potentialPct"], globalInhibition=toL5ConnectorParams["globalInhibition"], localAreaDensity=toL5ConnectorParams["localAreaDensity"], numActiveColumnsPerInhArea=toL5ConnectorParams[ "numActiveColumnsPerInhArea"], synPermInactiveDec=toL5ConnectorParams["synPermInactiveDec"], synPermActiveInc=toL5ConnectorParams["synPermActiveInc"], synPermConnected=toL5ConnectorParams["synPermConnected"], boostStrength=toL5ConnectorParams["boostStrength"], seed=toL5ConnectorParams["seed"], wrapAround=toL5ConnectorParams["wrapAround"]) print "toL5Connector Online" self.toD1Connector = SpatialPooler( inputDimensions=(columnCount, ), columnDimensions=(columnCount, ), potentialPct=toD1ConnectorParams["potentialPct"], globalInhibition=toD1ConnectorParams["globalInhibition"], localAreaDensity=toD1ConnectorParams["localAreaDensity"], numActiveColumnsPerInhArea=toD1ConnectorParams[ "numActiveColumnsPerInhArea"], synPermInactiveDec=toD1ConnectorParams["synPermInactiveDec"], synPermActiveInc=toD1ConnectorParams["synPermActiveInc"], synPermConnected=toD1ConnectorParams["synPermConnected"], boostStrength=toD1ConnectorParams["boostStrength"], seed=toD1ConnectorParams["seed"], wrapAround=toD1ConnectorParams["wrapAround"]) print "toD1Connector Online" self.toD2Connector = SpatialPooler( inputDimensions=(columnCount, ), columnDimensions=(columnCount, ), potentialPct=toD2ConnectorParams["potentialPct"], globalInhibition=toD2ConnectorParams["globalInhibition"], localAreaDensity=toD2ConnectorParams["localAreaDensity"], numActiveColumnsPerInhArea=toD2ConnectorParams[ "numActiveColumnsPerInhArea"], synPermInactiveDec=toD2ConnectorParams["synPermInactiveDec"], synPermActiveInc=toD2ConnectorParams["synPermActiveInc"], synPermConnected=toD2ConnectorParams["synPermConnected"], boostStrength=toD2ConnectorParams["boostStrength"], seed=toD2ConnectorParams["seed"], wrapAround=toD2ConnectorParams["wrapAround"]) print "toD2Connector Online" #HTM Layers from nupic.algorithms.temporal_memory import TemporalMemory self.L4ActiveColumns = numpy.zeros(self.columnCount, dtype=int) self.L4 = TemporalMemory( columnDimensions=(columnCount, ), seed=42, ) print "L4 Online" self.L5ActiveColumns = numpy.zeros(self.columnCount, dtype=int) self.L5 = TemporalMemory( columnDimensions=(columnCount, ), seed=42, ) print "L5 Online" self.D1ActiveColumns = numpy.zeros(self.columnCount, dtype=int) self.D1 = TemporalMemory( columnDimensions=(columnCount, ), seed=42, initialPermanence=0.21, connectedPermanence=0.5, ) print "D1 Online" self.D2ActiveColumns = numpy.zeros(self.columnCount, dtype=int) self.D2 = TemporalMemory( columnDimensions=(columnCount, ), seed=42, initialPermanence=0.21, connectedPermanence=0.5, ) print "D2 Online" def encode_input(sine1, sine2, angularSpeed1, angularSpeed2, efferenceCopy): return self.InputEncoder.encode({ "sine1": sine1, "sine2": sine2, "angularSpeed1": angularSpeed1, "angularSpeed2": angularSpeed2, "efferenceCopy": efferenceCopy }) def reset(self): self.action = 0 self.L4.reset() self.L5.reset() self.D1.reset() self.D2.reset() def mimic(self, observation, action): #mimicking only requires remembering the given obs-act pattern,thus the striatum is neglected in this func self.learning = True self.action = action encodedInput = self.encode_input(observation[0], observation[2], observation[4], observation[5], str(action)) self.toL4ConnectorI.compute(encodedInput, self.learning, self.L4ActiveColumns) self.L4.compute(self.L4ActiveColumns, learn=self.learning) L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0] L5Temp = numpy.zeros(self.columnCount, dtype=int) for column in L4activeColumnIndices: L5Temp[column] = 1 self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns) self.L5.compute(self.L5ActiveColumns, learn=self.learning) L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0] #no action generation is needed in this func def learn(self, env, observation, expectedReaction): #We humans learn by trial and error,so does an AI agent.For neural networks,they have BP,but HTM does not #have a clear way to reinforcement learn(Where to feed in rewards?).Here I try to do something new. self.learning = False #...trial encodedInput = self.encode_input(observation[0], observation[2], observation[4], observation[5], str(self.action)) self.toL4ConnectorI.compute(encodedInput, self.learning, self.L4ActiveColumns) L4Temp = numpy.zeros( self.columnCount * 3, dtype=int ) #ready to receive D1's disinhibition and D2's inhibition L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0] for column in L4activeColumnIndices: L4Temp[int(column) * 3] = 1 D1ActiveColumnsIndices = numpy.nonzero(self.D1ActiveColumns)[0] for column in D1ActiveColumnsIndices: L4Temp[int(column) * 3 + 1] = 1 D2ActiveColumnsIndices = numpy.nonzero(self.D2ActiveColumns)[0] for i in range(self.columnCount - 1): L4Temp[i * 3 + 2] = 1 for column in D2ActiveColumnsIndices: #achieve inhibition in this way L4Temp[i * 3 + 2] = 0 self.toL4ConnectorII.compute(L4Temp, self.learning, self.L4ActiveColumns) self.L4.compute(self.L4ActiveColumns, learn=self.learning) L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0] L5Temp = numpy.zeros(self.columnCount, dtype=int) for column in L4activeColumnIndices: L5Temp[column] = 1 self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns) self.L5.compute(self.L5ActiveColumns, learn=self.learning) L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0] #Action Generation p = 84 #there are 84 bits in the SDR representing the action fed in the agent,this is the "Efference Copy" count0 = 0 count1 = 0 count2 = 0 for activeIndice in L5activeColumnIndices: convertedIndice = (activeIndice + 1) * 1126 / columnCount if convertedIndice <= 1126 - p / 4 and convertedIndice > 1126 - p / 2: count2 = count2 + 1 if convertedIndice <= 1126 - p / 2 and convertedIndice > 1126 - 3 * p / 4: count1 = count1 + 1 if convertedIndice <= 1126 - 3 * p / 4 and convertedIndice > 1126 - p: count0 = count0 + 1 if count2 == max(count0, count1, count2): self.action = 2 if count1 == max(count0, count1, count2): self.action = 1 if count0 == max(count0, count1, count2): self.action = 0 #...and error if self.action == expectedReaction: reward = 0.1 else: reward = -0.1 self.D1.setConnectedPermanence(self.D1.getConnectedPermanence() * (self.k**(-reward))) #reward self.D2.setConnectedPermanence(self.D2.getConnectedPermanence() * (self.k**reward)) #punishment #Learn to correct mistakes(remember what's right and whats' wrong) self.learning = True DTemp = numpy.zeros(self.columnCount, dtype=int) for column in L5activeColumnIndices: DTemp[column] = 1 self.toD1Connector.compute(DTemp, self.learning, self.D1ActiveColumns) self.toD2Connector.compute(DTemp, self.learning, self.D2ActiveColumns) self.D1.compute(self.D1ActiveColumns, learn=self.learning) self.D2.compute(self.D2ActiveColumns, learn=self.learning) return reward def react(self, observation): self.learning = False encodedInput = self.encode_input(observation[0], observation[2], observation[4], observation[5], str(self.action)) self.toL4ConnectorI.compute(encodedInput, self.learning, self.L4ActiveColumns) L4Temp = numpy.zeros(self.columnCount * 3, dtype=int) L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0] for column in L4activeColumnIndices: L4Temp[int(column) * 3] = 1 D1ActiveColumnsIndices = numpy.nonzero(self.D1ActiveColumns)[0] for column in D1ActiveColumnsIndices: L4Temp[int(column) * 3 + 1] = 1 D2ActiveColumnsIndices = numpy.nonzero(self.D2ActiveColumns)[0] for i in range(self.columnCount - 1): L4Temp[i * 3 + 2] = 1 for column in D2ActiveColumnsIndices: L4Temp[i * 3 + 2] = 0 self.toL4ConnectorII.compute(L4Temp, self.learning, self.L4ActiveColumns) self.L4.compute(self.L4ActiveColumns, learn=self.learning) L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0] L5Temp = numpy.zeros(self.columnCount, dtype=int) for column in L4activeColumnIndices: L5Temp[column] = 1 self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns) self.L5.compute(self.L5ActiveColumns, learn=self.learning) L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0] p = 84 count0 = 0 count1 = 0 count2 = 0 for activeIndice in L5activeColumnIndices: convertedIndice = (activeIndice + 1) * 1126 / columnCount if convertedIndice <= 1126 - p / 4 and convertedIndice > 1126 - p / 2: count2 = count2 + 1 if convertedIndice <= 1126 - p / 2 and convertedIndice > 1126 - 3 * p / 4: count1 = count1 + 1 if convertedIndice <= 1126 - 3 * p / 4 and convertedIndice > 1126 - p: count0 = count0 + 1 if count2 == max(count0, count1, count2): self.action = 2 if count1 == max(count0, count1, count2): self.action = 1 if count0 == max(count0, count1, count2): self.action = 0 return self.action
TM = TemporalMemory(columnDimensions=(pooler_out, ), cellsPerColumn=cell_col) # Train Spatial Pooler start = time.time() active_columns = np.zeros(pooler_out) print("Spatial pooler learning") for x in range(len(Data)): encoder = multiencode(var_encoders, Data, x) # e_val = RDSE.encode(Data['value'][x]) # e_tod = TODE.encode(Data.index[x]) # e_wend = WENDE.encode(Data.index[x]) # encoder = np.concatenate([e_val]) SP.compute(encoder, True, active_columns) end = time.time() print(end - start) print("Temporal pooler learning") start = time.time() A_score = np.zeros(len(Data)) for x in range(len(Data)): encoder = multiencode(var_encoders, Data, x) # e_val = RDSE.encode(Data['value'][x]) # e_tod = TODE.encode(Data.index[x]) # e_wend = WENDE.encode(Data.index[x]) # encoder = np.concatenate([e_val])
class DendriteDetector(AnomalyDetector): def initialize(self): # Keep track of value range for spatial anomaly detection. self.minVal = None self.maxVal = None # Time of day encoder self.timeOfDayEncoder = DateEncoder(timeOfDay=(21, 9.49), name='time_enc') # RDSE encoder for the time series value. minResolution = 0.001 rangePadding = abs(self.inputMax - self.inputMin) * 0.2 minVal = self.inputMin - rangePadding maxVal = self.inputMax + rangePadding numBuckets = 130 resolution = max(minResolution, (maxVal - minVal) / numBuckets) self.value_enc = RandomDistributedScalarEncoder(resolution=resolution, name='value_rdse') # Spatial Pooler. encodingWidth = self.timeOfDayEncoder.getWidth( ) + self.value_enc.getWidth() self.sp = SpatialPooler( inputDimensions=(encodingWidth, ), columnDimensions=(2048, ), potentialPct=0.8, potentialRadius=encodingWidth, globalInhibition=1, numActiveColumnsPerInhArea=40, synPermInactiveDec=0.0005, synPermActiveInc=0.003, synPermConnected=0.2, boostStrength=0.0, seed=1956, wrapAround=True, ) self.tm = TemporalMemory( columnDimensions=(2048, ), cellsPerColumn=32, activationThreshold=20, initialPermanence=.5, # Increased to connectedPermanence. connectedPermanence=.5, minThreshold=13, maxNewSynapseCount=31, permanenceIncrement=0.04, permanenceDecrement=0.008, predictedSegmentDecrement=0.001, maxSegmentsPerCell=128, maxSynapsesPerSegment= 128, # Changed meaning. Also see connections.topology[2] seed=1993, ) # Initialize the anomaly likelihood object numentaLearningPeriod = int(math.floor(self.probationaryPeriod / 2.0)) self.anomalyLikelihood = anomaly_likelihood.AnomalyLikelihood( learningPeriod=numentaLearningPeriod, estimationSamples=self.probationaryPeriod - numentaLearningPeriod, reestimationPeriod=100, ) self.age = 0 def getAdditionalHeaders(self): """Returns a list of strings.""" return ["raw_score"] def handleRecord(self, inputData): """ Argument inputData is {"value": instantaneous_value, "timestamp": pandas.Timestamp} Returns a tuple (anomalyScore, rawScore). Internally to NuPIC "anomalyScore" corresponds to "likelihood_score" and "rawScore" corresponds to "anomaly_score". Sorry about that. """ # Check for spatial anomalies and update min/max values. value = inputData["value"] spatialAnomaly = False if self.minVal != self.maxVal: tolerance = (self.maxVal - self.minVal) * SPATIAL_TOLERANCE maxExpected = self.maxVal + tolerance minExpected = self.minVal - tolerance if value > maxExpected or value < minExpected: spatialAnomaly = True if self.maxVal is None or value > self.maxVal: self.maxVal = value if self.minVal is None or value < self.minVal: self.minVal = value # Run the HTM stack. First Encoders. timestamp = inputData["timestamp"] timeOfDayBits = np.zeros(self.timeOfDayEncoder.getWidth()) self.timeOfDayEncoder.encodeIntoArray(timestamp, timeOfDayBits) valueBits = np.zeros(self.value_enc.getWidth()) self.value_enc.encodeIntoArray(value, valueBits) encoding = np.concatenate([timeOfDayBits, valueBits]) # Spatial Pooler. activeColumns = np.zeros(self.sp.getNumColumns()) self.sp.compute(encoding, True, activeColumns) activeColumnIndices = np.nonzero(activeColumns)[0] # Temporal Memory and Anomaly. predictions = self.tm.getPredictiveCells() predictedColumns = list(self.tm.mapCellsToColumns(predictions).keys()) self.tm.compute(activeColumnIndices, learn=True) activeCells = self.tm.getActiveCells() rawScore = anomaly.computeRawAnomalyScore(activeColumnIndices, predictedColumns) # Compute log(anomaly likelihood) anomalyScore = self.anomalyLikelihood.anomalyProbability( inputData["value"], rawScore, inputData["timestamp"]) finalScore = logScore = self.anomalyLikelihood.computeLogLikelihood( anomalyScore) if spatialAnomaly: finalScore = 1.0 if False: # Plot correlation of excitement versus compartmentalization. if self.age == 0: print("Correlation Plots ENABLED.") if False: start_age = 1000 end_age = 1800 else: start_age = 4000 end_age = 7260 if self.age == start_age: import correlation import random self.cor_samplers = [] sampled_cells = [] while len(self.cor_samplers) < 20: n = random.choice(xrange(self.tm.numberOfCells())) if n in sampled_cells: continue else: sampled_cells.append(n) neuron = self.tm.connections.dataForCell(n) if neuron._roots: c = correlation.CorrelationSampler(neuron._roots[0]) c.random_sample_points(100) self.cor_samplers.append(c) print("Created %d Correlation Samplers" % len(self.cor_samplers)) if self.age >= start_age: for smplr in self.cor_samplers: smplr.sample() if self.age == end_age: import matplotlib.pyplot as plt for idx, smplr in enumerate(self.cor_samplers): if smplr.num_samples == 0: print("No samples, plot not shown.") continue plt.figure("Sample %d" % idx) smplr.plot(period=64) # Different value! plt.show() if False: # Plot excitement of a typical detection on a dendrite. if self.age == 7265: #if self.age == 1800: import matplotlib.pyplot as plt import random from connections import SYN_CONNECTED_ACTIVE sampled_cells = set() for figure_num in xrange(40): plt.figure("(%d)" % figure_num) # Find an active cell to view. cell = None for attempt in range(100): event = random.choice(self.tm.activeEvents) cell = event.cell # This is an integer. if cell is not None and cell not in sampled_cells: break else: break sampled_cells.add(cell) cell = self.tm.connections.dataForCell(cell) # Organize the data. EPSPs = [] excitement = [] distance_to_root = 0 segment_offsets = {} branch = cell._roots[0] while True: segment_offsets[branch] = distance_to_root distance_to_root += len(branch._synapses) excitement.extend(branch.excitement) for syn in branch._synapses: if syn is None: EPSPs.append(0) else: EPSPs.append(syn.state == SYN_CONNECTED_ACTIVE) if branch.children: branch = random.choice(branch.children) else: break plt.plot( np.arange(distance_to_root), EPSPs, 'r', np.arange(distance_to_root), excitement, 'b', ) plt.title( "Dendrite Activation\n Horizontal line is activation threshold, Vertical lines are segment bifurcations" ) plt.xlabel("Distance along Dendrite", ) plt.ylabel("EPSPs are Red, Excitement is Blue") # Show lines where the excitement crosses thresholds. plt.axhline(20, color='k') # Hard coded parameter value. for offset in segment_offsets.values(): if offset != 0: plt.axvline(offset, color='k') print("\nShowing %d excitement plots." % len(sampled_cells)) plt.show() self.age += 1 return (finalScore, rawScore)
#print "warning = ", warning sp = SpatialPooler(inputDimensions=(len(info), ), columnDimensions=(3, ), potentialRadius=15, numActiveColumnsPerInhArea=1, globalInhibition=True, synPermActiveInc=0.03, potentialPct=1.0) import numpy for column in xrange(3): connected = numpy.zeros((len(info), ), dtype="int") sp.getConnectedSynapses(column, connected) print connected output = numpy.zeros((3, ), dtype="int") sp.compute(info, learn=True, activeArray=output) print output output = numpy.zeros((3, ), dtype="int") sp.compute(error, learn=True, activeArray=output) print output output = numpy.zeros((3, ), dtype="int") sp.compute(warning, learn=True, activeArray=output) print output for _ in xrange(200): sp.compute(info, learn=True, activeArray=output) sp.compute(error, learn=True, activeArray=output) sp.compute(warning, learn=True, activeArray=output) #sp.compute(loris, learn=True, activeArray=output)
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] scalarEncoder = RandomDistributedScalarEncoder( enParams["consumption"]["resolution"]) scalarEncoder2 = RandomDistributedScalarEncoder( enParams["consumption2"]["resolution"]) encodingWidth = (scalarEncoder.getWidth() + scalarEncoder2.getWidth()) sp = SpatialPooler( inputDimensions=(encodingWidth, ), columnDimensions=(spParams["columnCount"], ), potentialPct=spParams["potentialPct"], potentialRadius=encodingWidth, globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], seed=spParams["seed"], wrapAround=True) tm = TemporalMemory( columnDimensions=(tmParams["columnCount"], ), cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"]) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() output = output_anomaly_generic_v1.NuPICFileOutput(_FILE_NAME) for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. # dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. prediction = float(record[1]) prediction2 = float(record[2]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. consumptionBits = numpy.zeros(scalarEncoder.getWidth()) consumptionBits2 = numpy.zeros(scalarEncoder2.getWidth()) # Now we call the encoders to create bit representations for each value. scalarEncoder.encodeIntoArray(prediction, consumptionBits) scalarEncoder2.encodeIntoArray(prediction2, consumptionBits2) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate([consumptionBits, consumptionBits2]) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(prediction)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute(recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": prediction }, learn=True, infer=True) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted(zip( classifierResult[1], classifierResult["actualValues"]), reverse=True)[0] # print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) # results.append([oneStep, oneStepConfidence * 100, None, None]) results.append( [record[0], prediction, oneStep, oneStepConfidence * 100]) output.write(record[0], prediction, oneStep, oneStepConfidence * 100) output.close() return results
def runHotgym(numRecords): with open(_PARAMS_PATH, "r") as f: modelParams = yaml.safe_load(f)["modelParams"] enParams = modelParams["sensorParams"]["encoders"] spParams = modelParams["spParams"] tmParams = modelParams["tmParams"] timeOfDayEncoder = DateEncoder( timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"]) weekendEncoder = DateEncoder( weekend=enParams["timestamp_weekend"]["weekend"]) scalarEncoder = RandomDistributedScalarEncoder( enParams["consumption"]["resolution"]) encodingWidth = (timeOfDayEncoder.getWidth() + weekendEncoder.getWidth() + scalarEncoder.getWidth()) sp = SpatialPooler( inputDimensions=(encodingWidth,), columnDimensions=(spParams["columnCount"],), potentialPct=spParams["potentialPct"], potentialRadius=encodingWidth, globalInhibition=spParams["globalInhibition"], localAreaDensity=spParams["localAreaDensity"], numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], seed=spParams["seed"], wrapAround=True ) tm = TemporalMemory( columnDimensions=(tmParams["columnCount"],), cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"], seed=tmParams["seed"] ) classifier = SDRClassifierFactory.create() results = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = reader.next() reader.next() reader.next() for count, record in enumerate(reader): if count >= numRecords: break # Convert data string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) # To encode, we need to provide zero-filled numpy arrays for the encoders # to populate. timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth()) weekendBits = numpy.zeros(weekendEncoder.getWidth()) consumptionBits = numpy.zeros(scalarEncoder.getWidth()) # Now we call the encoders to create bit representations for each value. timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits) weekendEncoder.encodeIntoArray(dateString, weekendBits) scalarEncoder.encodeIntoArray(consumption, consumptionBits) # Concatenate all these encodings into one large encoding for Spatial # Pooling. encoding = numpy.concatenate( [timeOfDayBits, weekendBits, consumptionBits] ) # Create an array to represent active columns, all initially zero. This # will be populated by the compute method below. It must have the same # dimensions as the Spatial Pooler. activeColumns = numpy.zeros(spParams["columnCount"]) # Execute Spatial Pooling algorithm over input space. sp.compute(encoding, True, activeColumns) activeColumnIndices = numpy.nonzero(activeColumns)[0] # Execute Temporal Memory algorithm over active mini-columns. tm.compute(activeColumnIndices, learn=True) activeCells = tm.getActiveCells() # Get the bucket info for this input value for classification. bucketIdx = scalarEncoder.getBucketIndices(consumption)[0] # Run classifier to translate active cells back to scalar value. classifierResult = classifier.compute( recordNum=count, patternNZ=activeCells, classification={ "bucketIdx": bucketIdx, "actValue": consumption }, learn=True, infer=True ) # Print the best prediction for 1 step out. oneStepConfidence, oneStep = sorted( zip(classifierResult[1], classifierResult["actualValues"]), reverse=True )[0] print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100)) results.append([oneStep, oneStepConfidence * 100, None, None]) return results