def setUp(self): self.params = dict(trainRecords=10, anomalyThreshold=1.1, cacheSize=10000, k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000) self.helper = KNNAnomalyClassifierRegion(**self.params)
def setUp(self): self.params = dict( trainRecords=10, anomalyThreshold=1.1, cacheSize=10000, k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000) self.helper = KNNAnomalyClassifierRegion(**self.params)
def testInit(self): params = dict(trainRecords=100, anomalyThreshold=101, cacheSize=102, classificationVectorType=1, k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000) helper = KNNAnomalyClassifierRegion(**params) self.assertEqual(helper.trainRecords, params['trainRecords']) self.assertEqual(helper.anomalyThreshold, params['anomalyThreshold']) self.assertEqual(helper.cacheSize, params['cacheSize']) self.assertEqual(helper.classificationVectorType, params['classificationVectorType'])
def testWriteRead(self): self.maxDiff = None records = [] for i in range(self.helper.trainRecords): spBottomUpOut = numpy.zeros(1000) tpTopDownOut = numpy.zeros(1000) tpLrnActiveStateT = numpy.zeros(1000) spBottomUpOut[random.sample(range(1000), 20)] = 1 tpTopDownOut[random.sample(range(1000), 20)] = 1 tpLrnActiveStateT[random.sample(range(1000), 20)] = 1 records.append({ 'spBottomUpOut': spBottomUpOut, 'tpTopDownOut': tpTopDownOut, 'tpLrnActiveStateT': tpLrnActiveStateT }) self.helper.setParameter('anomalyThreshold', None, 0.5) for i in range(self.helper.trainRecords): self.helper.compute(records[i], None) for _ in range(10): self.helper.compute(random.choice(records), None) proto = KNNAnomalyClassifierRegionProto.new_message() self.helper.writeToProto(proto) with tempfile.TemporaryFile() as f: proto.write(f) f.seek(0) protoDeserialized = KNNAnomalyClassifierRegionProto.read(f) knnDeserialized = KNNAnomalyClassifierRegion.readFromProto( protoDeserialized) self.assertEqual(self.helper._maxLabelOutputs, knnDeserialized._maxLabelOutputs) self.assertEqual(self.helper._activeColumnCount, knnDeserialized._activeColumnCount) self.assertTrue((self.helper._prevPredictedColumns == knnDeserialized._prevPredictedColumns).all()) self.assertEqual(self.helper._anomalyVectorLength, knnDeserialized._anomalyVectorLength) self.assertAlmostEqual(self.helper._classificationMaxDist, knnDeserialized._classificationMaxDist) self.assertEqual(self.helper._iteration, knnDeserialized._iteration) self.assertEqual(self.helper.trainRecords, knnDeserialized.trainRecords) self.assertEqual(self.helper.anomalyThreshold, knnDeserialized.anomalyThreshold) self.assertEqual(self.helper.cacheSize, knnDeserialized.cacheSize) self.assertEqual(self.helper.classificationVectorType, knnDeserialized.classificationVectorType) self.assertListEqual(self.helper.getLabelResults(), knnDeserialized.getLabelResults()) for i, expected in enumerate(self.helper._recordsCache): actual = knnDeserialized._recordsCache[i] self.assertEqual(expected.ROWID, actual.ROWID) self.assertAlmostEqual(expected.anomalyScore, actual.anomalyScore) self.assertListEqual(expected.anomalyVector, actual.anomalyVector) self.assertListEqual(expected.anomalyLabel, actual.anomalyLabel) self.assertEqual(expected.setByUser, actual.setByUser)
class KNNAnomalyClassifierRegionTest(unittest.TestCase): """KNNAnomalyClassifierRegion unit tests.""" def setUp(self): self.params = dict(trainRecords=10, anomalyThreshold=1.1, cacheSize=10000, k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000) self.helper = KNNAnomalyClassifierRegion(**self.params) def testInit(self): params = dict(trainRecords=100, anomalyThreshold=101, cacheSize=102, classificationVectorType=1, k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000) helper = KNNAnomalyClassifierRegion(**params) self.assertEqual(helper.trainRecords, params['trainRecords']) self.assertEqual(helper.anomalyThreshold, params['anomalyThreshold']) self.assertEqual(helper.cacheSize, params['cacheSize']) self.assertEqual(helper.classificationVectorType, params['classificationVectorType']) @patch.object(KNNAnomalyClassifierRegion, '_classifyState') @patch.object(KNNAnomalyClassifierRegion, 'getParameter') @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') def testCompute(self, constructRecord, getParam, classifyState): params = {'trainRecords': 0} getParam.side_effect = params.get state = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": [1, 4, 5], "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) constructRecord.return_value = record self.helper.compute(dict(), dict()) classifyState.assert_called_once_with(record) self.assertEqual(self.helper.labelResults, state['anomalyLabel']) def testGetLabels(self): # No _recordsCache self.helper._recordsCache = [] self.assertEqual(self.helper.getLabels(), \ {'isProcessing': False, 'recordLabels': []}) # Invalid ranges self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.getLabels, start=100, end=100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.getLabels, start=-100, end=-100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.getLabels, start=100, end=-100) # Valid no threshold labels values = { 'categoryRecencyList': [4, 5, 7], } self.helper.saved_categories = ['TestCategory'] categoryList = [1, 1, 1] classifier = self.helper._knnclassifier classifier.getParameter = Mock(side_effect=values.get) classifier._knn._categoryList = categoryList results = self.helper.getLabels() self.assertTrue('isProcessing' in results) self.assertTrue('recordLabels' in results) self.assertEqual(len(results['recordLabels']), len(values['categoryRecencyList'])) for record in results['recordLabels']: self.assertTrue(record['ROWID'] in values['categoryRecencyList']) self.assertEqual(record['labels'], self.helper.saved_categories) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testAddLabel(self, classifyState, constructVector, getVector): # Setup Mocks getVector.return_value = numpy.array([0, 0, 0, 1, 0, 0, 1]) knn = self.helper._knnclassifier._knn knn.learn = Mock() # Invalid ranges self.helper._recordsCache = [] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=100, end=100, labelName="test") self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=100, end=100, labelName="test") self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=-100, end=-100, labelName="test") self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=100, end=-100, labelName="test") # Valid no threshold labels self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=[], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True) ] results = self.helper.addLabel(11, 12, "Added") # Verifies records were updated self.assertEqual(results, None) self.assertTrue('Added' in self.helper._recordsCache[1].anomalyLabel) self.assertTrue(self.helper._recordsCache[1].setByUser) # Verifies record added to KNN classifier knn.learn.assert_called_once_with(ANY, ANY, rowID=11) # Verifies records after added label is recomputed classifyState.assert_called_once_with(self.helper._recordsCache[2]) @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testRemoveLabel(self, classifyState, constructClassificationRecord): knn = self.helper._knnclassifier._knn knn._numPatterns = 3 knn._categoryRecencyList = [10, 11, 12] knn.removeIds = Mock(side_effect=self.mockRemoveIds) self.helper._recordsCache = [] self.assertRaises( HTMPredictionModelInvalidRangeError, self.helper.removeLabels, ) # Invalid ranges self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.removeLabels, start=100, end=100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.removeLabels, start=-100, end=-100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.removeLabels, start=100, end=-100) # Valid no threshold labels self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True) ] results = self.helper.removeLabels(11, 12, "Test") self.assertEqual(results, None) self.assertTrue( 'Test' not in self.helper._recordsCache[1].anomalyLabel) # Verifies records removed from KNN classifier self.assertEqual(knn.removeIds.mock_calls, [call([11]), call([])]) # Verifies records after removed record are updated classifyState.assert_called_once_with(self.helper._recordsCache[2]) @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testRemoveLabelNoFilter(self, classifyState, constructClassificationRecord): knn = self.helper._knnclassifier._knn knn._numPatterns = 3 knn._categoryRecencyList = [10, 11, 12] knn.removeIds = Mock(side_effect=self.mockRemoveIds) # Valid no threshold labels self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True) ] results = self.helper.removeLabels(11, 12) self.assertEqual(results, None) self.assertTrue( 'Test' not in self.helper._recordsCache[1].anomalyLabel) # Verifies records removed from KNN classifier self.assertEqual(knn.removeIds.mock_calls, [call([11]), call([])]) # Verifies records after removed record are updated classifyState.assert_called_once_with(self.helper._recordsCache[2]) @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testSetGetThreshold(self, classifyState): self.helper._recordsCache = [Mock(), Mock(), Mock()] self.helper.setParameter('anomalyThreshold', None, 1.0) self.assertAlmostEqual(self.helper.anomalyThreshold, 1.0) self.assertEqual(len(classifyState.mock_calls), len(self.helper._recordsCache)) self.assertAlmostEqual(self.helper.getParameter('anomalyThreshold'), 1.0) self.assertRaises(Exception, self.helper.setParameter, 'anomalyThreshold', None, 'invalid') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testSetGetWaitRecords(self, classifyState): self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True) ] self.helper.setParameter('trainRecords', None, 20) self.assertEqual(self.helper.trainRecords, 20) self.assertEqual(len(classifyState.mock_calls), len(self.helper._recordsCache)) self.assertEqual(self.helper.getParameter('trainRecords'), 20) # Test invalid parameter type self.assertRaises(Exception, self.helper.setParameter, 'trainRecords', None, 'invalid') # Test invalid value before first record ROWID in cache state = { "ROWID": 1000, "anomalyScore": 1.0, "anomalyVector": [1, 4, 5], "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) self.helper._recordsCache = [state] self.assertRaises(Exception, self.helper.setParameter, 'trainRecords', None, 0) @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') def testSetGetWaitRecordsRecalculate(self, getRecord): """ This test ensures that records in classifier are removed when they are no longer being used when the trainRecords is set. """ self.helper.cacheSize = 5 self.helper.anomalyThreshold = 0.8 self.helper._anomalyVectorLength = 20 records = [ Mock(ROWID=10, anomalyLabel=["Test"], anomalyScore=1, setByUser=False, anomalyVector=numpy.array([1, 4])), Mock(ROWID=11, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1, 2])), Mock(ROWID=12, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1, 4])), Mock(ROWID=13, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1, 2, 6, 7])), Mock(ROWID=14, anomalyLabel=["Test"], anomalyScore=1, setByUser=False, anomalyVector=numpy.array([1, 10])), Mock(ROWID=15, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1, 3])), Mock(ROWID=16, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1, 4])), Mock(ROWID=17, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([10])), Mock(ROWID=18, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1, 4])) ] getRecord.side_effect = records for i in records: self.helper.compute(dict(), dict()) self.assertEqual(self.helper._knnclassifier._knn._numPatterns, 6) self.assertEqual( self.helper._knnclassifier.getParameter('categoryRecencyList'), [10, 12, 14, 16, 17, 18], "Classifier incorrectly classified test records.") # Now set trainRecords and should remove the labels outside of cache # and relabel points. self.helper.setParameter('trainRecords', None, 14) self.assertEqual(self.helper._knnclassifier._knn._numPatterns, 2) self.assertEqual( self.helper._knnclassifier.getParameter('categoryRecencyList'), [14, 17], "Classifier incorrectly reclassified test records after setting " "trainRecords") @patch.object(KNNAnomalyClassifierRegion, '_addRecordToKNN') @patch.object(KNNAnomalyClassifierRegion, '_deleteRecordsFromKNN') @patch.object(KNNAnomalyClassifierRegion, '_recomputeRecordFromKNN') @patch.object(KNNAnomalyClassifierRegion, '_categoryToLabelList') def testUpdateState(self, toLabelList, recompute, deleteRecord, addRecord): record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "", "anomalyLabel": ["Label"], "setByUser": False } # Test record not labeled and not above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.trainRecords = 0 self.helper.anomalyThreshold = 1.1 toLabelList.return_value = [] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, []) deleteRecord.assert_called_once_with([state]) # Test record not labeled and above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 0.5 toLabelList.return_value = [] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL]) addRecord.assert_called_once_with(state) # Test record not labeled and above threshold during wait period deleteRecord.reset_mock() addRecord.reset_mock() self.helper.trainRecords = 10 self.helper.anomalyThreshold = 0.5 toLabelList.return_value = [] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, []) self.assertTrue(not addRecord.called) # Test record labeled and not above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.trainRecords = 0 self.helper.anomalyThreshold = 1.1 toLabelList.return_value = ["Label"] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, ["Label"]) self.assertTrue(not addRecord.called) # Test setByUser deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 1.1 toLabelList.return_value = ["Label 2"] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual( state.anomalyLabel, [recordCopy["anomalyLabel"][0], toLabelList.return_value[0]]) addRecord.assert_called_once_with(state) # Test removal of above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 1.1 toLabelList.return_value = [] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True recordCopy['anomalyLabel'] = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL, KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL + \ KNNAnomalyClassifierRegion.AUTO_TAG] state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, []) # Auto classified threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 1.1 toLabelList.return_value = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True recordCopy['anomalyLabel'] = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL] state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL + \ KNNAnomalyClassifierRegion.AUTO_TAG]) addRecord.assert_called_once_with(state) # Test precedence of threshold label above auto threshold label deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 0.8 toLabelList.return_value = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL, KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL + \ KNNAnomalyClassifierRegion.AUTO_TAG] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True recordCopy['anomalyLabel'] = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL] state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual( state.anomalyLabel, [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL]) addRecord.assert_called_once_with(state) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') def testAddRecordToKNN(self, getAnomalyVector): getAnomalyVector.return_value = numpy.array([0, 1, 0, 0, 1, 0, 1, 1]) values = {'categoryRecencyList': [1, 2, 3]} classifier = self.helper._knnclassifier classifier.getParameter = Mock(side_effect=values.get) classifier._knn.learn = Mock() classifier._knn.prototypeSetCategory = Mock() state = { "ROWID": 5, "anomalyScore": 1.0, "anomalyVector": numpy.array([1, 5, 7, 8]), "anomalyLabel": ["Label"], "setByUser": False } record = _CLAClassificationRecord(**state) # Test with record not already in KNN self.helper._addRecordToKNN(record) classifier._knn.learn.assert_called_once_with( getAnomalyVector.return_value, ANY, rowID=state['ROWID']) self.assertTrue(not classifier._knn.prototypeSetCategory.called) classifier._knn.learn.reset_mock() # Test with record already in KNN values = {'categoryRecencyList': [1, 2, 3, 5]} classifier.getParameter.side_effect = values.get self.helper._addRecordToKNN(record) classifier._knn.prototypeSetCategory.assert_called_once_with( state['ROWID'], ANY) self.assertTrue(not classifier._knn.learn.called) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') def testDeleteRangeFromKNN(self, getAnomalyVector): getAnomalyVector.return_value = "Vector" values = {'categoryRecencyList': [1, 2, 3]} classifier = self.helper._knnclassifier classifier.getParameter = Mock(side_effect=values.get) classifier._knn._numPatterns = len(values['categoryRecencyList']) classifier._knn.removeIds = Mock(side_effect=self.mockRemoveIds) # Test with record not already in KNN self.helper._deleteRangeFromKNN(start=1, end=3) classifier._knn.removeIds.assert_called_once_with([1, 2]) classifier._knn.removeIds.reset_mock() # Test with record already in KNN values = {'categoryRecencyList': [1, 2, 3, 5]} classifier.getParameter.side_effect = values.get self.helper._deleteRangeFromKNN(start=1) classifier._knn.removeIds.assert_called_once_with([1, 2, 3, 5]) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') def testRecomputeRecordFromKNN(self, getAnomalyVector): getAnomalyVector.return_value = "Vector" self.helper.trainRecords = 0 values = { 'categoryRecencyList': [1, 2, 3, 5, 6, 7, 8, 9], 'latestDists': numpy.array([0.7, 0.2, 0.5, 1, 0.3, 0.2, 0.1]), 'categories': ['A', 'B', 'C', 'D', 'E', 'F', 'G'] } classifier = self.helper._knnclassifier classifier.getLatestDistances = Mock( return_value=values['latestDists']) classifier.getCategoryList = Mock(return_value=values['categories']) classifier.getParameter = Mock(side_effect=values.get) classifier.setParameter = Mock() classifier.compute = Mock() state = { "ROWID": 5, "anomalyScore": 1.0, "anomalyVector": "", "anomalyLabel": ["Label"], "setByUser": False } record = _CLAClassificationRecord(**state) # Test finding best category before record - exists self.helper._classificationMaxDist = 0.4 self.helper._autoDetectWaitRecords = 0 result = self.helper._recomputeRecordFromKNN(record) self.assertEqual(result, 'B') # Test finding best category before record - does not exists self.helper._classificationMaxDist = 0.1 result = self.helper._recomputeRecordFromKNN(record) self.assertEqual(result, None) # Test finding best category before record - not record before record.ROWID = 0 self.helper._classificationMaxDist = 0.1 result = self.helper._recomputeRecordFromKNN(record) self.assertEqual(result, None) def testConstructClassificationVector(self): modelParams = {'__numRunCalls': 0} spVals = { 'params': { 'activeOutputCount': 5 }, 'output': { 'bottomUpOut': numpy.array([1, 1, 0, 0, 1]) } } tpVals = { 'params': { 'cellsPerColumn': 2, 'columnCount': 2 }, 'output': { 'lrnActive': numpy.array([1, 0, 0, 1]), 'topDownOut': numpy.array([1, 0, 0, 0, 1]) } } inputs = dict(spBottomUpOut=spVals['output']['bottomUpOut'], tpTopDownOut=tpVals['output']['topDownOut'], tpLrnActiveStateT=tpVals['output']['lrnActive']) self.helper._activeColumnCount = 5 # Test TM Cell vector self.helper.classificationVectorType = 1 vector = self.helper._constructClassificationRecord(inputs) self.assertEqual(vector.anomalyVector, tpVals['output']['lrnActive'].nonzero()[0].tolist()) # Test SP and TM Column Error vector self.helper.classificationVectorType = 2 self.helper._prevPredictedColumns = numpy.array([1, 0, 0, 0, 1]).nonzero()[0] vector = self.helper._constructClassificationRecord(inputs) self.assertEqual(vector.anomalyVector, [0, 1, 4]) self.helper._prevPredictedColumns = numpy.array([1, 0, 1, 0, 0]).nonzero()[0] vector = self.helper._constructClassificationRecord(inputs) self.assertEqual(vector.anomalyVector, [0, 1, 4, 7]) self.helper.classificationVectorType = 3 self.assertRaises(TypeError, self.helper._constructClassificationRecord, inputs) @patch.object(KNNAnomalyClassifierRegion, '_classifyState') @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') def testCompute(self, createRecord, updateState): state = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": numpy.array([1, 0, 0, 0, 1]), "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) createRecord.return_value = record inputs = dict() outputs = dict() # Test add first record self.helper.cacheSize = 10 self.helper.trainRecords = 0 self.helper._recordsCache = [] self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) updateState.assert_called_once_with(self.helper._recordsCache[-1]) # Test add record before wait records updateState.reset_mock() self.helper.cacheSize = 10 self.helper.trainRecords = 10 self.helper._recordsCache = [] self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 2) self.assertTrue(not updateState.called) # Test exceeded cache length updateState.reset_mock() self.helper.cacheSize = 1 self.helper._recordsCache = [] self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) self.assertTrue(not updateState.called) def testCategoryToList(self): result = self.helper._categoryToLabelList(None) self.assertEqual(result, []) self.helper.saved_categories = ['A', 'B', 'C'] result = self.helper._categoryToLabelList(1) self.assertEqual(result, ['A']) result = self.helper._categoryToLabelList(4) self.assertEqual(result, ['C']) result = self.helper._categoryToLabelList(5) self.assertEqual(result, ['A', 'C']) def testGetAnomalyVector(self): state = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": [1, 4, 5], "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) self.helper._anomalyVectorLength = 10 vector = self.helper._getStateAnomalyVector(record) self.assertEqual(len(vector), self.helper._anomalyVectorLength) self.assertEqual(vector.nonzero()[0].tolist(), record.anomalyVector) # Tests for configuration # =========================================================================== def testSetState(self): # No Version set state = dict(_classificationDelay=100) state['_knnclassifierProps'] = self.params self.helper._vectorType = None self.helper.__setstate__(state) self.assertEqual(self.helper.classificationVectorType, 1) self.assertEqual(self.helper._version, KNNAnomalyClassifierRegion.__VERSION__) # Version 1 state = dict(_version=1, _classificationDelay=100) state['_knnclassifierProps'] = self.params self.helper.__setstate__(state) self.assertEqual(self.helper._version, KNNAnomalyClassifierRegion.__VERSION__) # Invalid Version state = dict(_version="invalid") state['_knnclassifierProps'] = self.params self.assertRaises(Exception, self.helper.__setstate__, state) # Tests for _HTMClassificationRecord class # =========================================================================== def testCLAClassificationRecord(self): record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label" } state = _CLAClassificationRecord(**record) self.assertEqual(state.ROWID, record['ROWID']) self.assertEqual(state.anomalyScore, record['anomalyScore']) self.assertEqual(state.anomalyVector, record['anomalyVector']) self.assertEqual(state.anomalyLabel, record['anomalyLabel']) self.assertEqual(state.setByUser, False) record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label", "setByUser": True } state = _CLAClassificationRecord(**record) self.assertEqual(state.ROWID, record['ROWID']) self.assertEqual(state.anomalyScore, record['anomalyScore']) self.assertEqual(state.anomalyVector, record['anomalyVector']) self.assertEqual(state.anomalyLabel, record['anomalyLabel']) self.assertEqual(state.setByUser, record['setByUser']) def testCLAClassificationRecordGetState(self): record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label", "setByUser": False } state = _CLAClassificationRecord(**record) self.assertEqual(state.__getstate__(), record) def testCLAClassificationRecordSetState(self): record = { "ROWID": None, "anomalyScore": None, "anomalyVector": None, "anomalyLabel": None, "setByUser": None } state = _CLAClassificationRecord(**record) record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label", "setByUser": False } state.__setstate__(record) self.assertEqual(state.ROWID, record['ROWID']) self.assertEqual(state.anomalyScore, record['anomalyScore']) self.assertEqual(state.anomalyVector, record['anomalyVector']) self.assertEqual(state.anomalyLabel, record['anomalyLabel']) self.assertEqual(state.setByUser, record['setByUser']) def mockRemoveIds(self, ids): self.helper._knnclassifier._knn._numPatterns -= len(ids) knnClassifier = self.helper._knnclassifier for idx in ids: if idx in self.helper._knnclassifier.getParameter( 'categoryRecencyList'): knnClassifier.getParameter('categoryRecencyList').remove(idx) @unittest.skipUnless( capnp, "pycapnp is not installed, skipping serialization test.") def testWriteRead(self): self.maxDiff = None records = [] for i in range(self.helper.trainRecords): spBottomUpOut = numpy.zeros(1000) tpTopDownOut = numpy.zeros(1000) tpLrnActiveStateT = numpy.zeros(1000) spBottomUpOut[random.sample(range(1000), 20)] = 1 tpTopDownOut[random.sample(range(1000), 20)] = 1 tpLrnActiveStateT[random.sample(range(1000), 20)] = 1 records.append({ 'spBottomUpOut': spBottomUpOut, 'tpTopDownOut': tpTopDownOut, 'tpLrnActiveStateT': tpLrnActiveStateT }) self.helper.setParameter('anomalyThreshold', None, 0.5) for i in range(self.helper.trainRecords): self.helper.compute(records[i], None) for _ in range(10): self.helper.compute(random.choice(records), None) proto = KNNAnomalyClassifierRegionProto.new_message() self.helper.writeToProto(proto) with tempfile.TemporaryFile() as f: proto.write(f) f.seek(0) protoDeserialized = KNNAnomalyClassifierRegionProto.read(f) knnDeserialized = KNNAnomalyClassifierRegion.readFromProto( protoDeserialized) self.assertEqual(self.helper._maxLabelOutputs, knnDeserialized._maxLabelOutputs) self.assertEqual(self.helper._activeColumnCount, knnDeserialized._activeColumnCount) self.assertTrue((self.helper._prevPredictedColumns == knnDeserialized._prevPredictedColumns).all()) self.assertEqual(self.helper._anomalyVectorLength, knnDeserialized._anomalyVectorLength) self.assertAlmostEqual(self.helper._classificationMaxDist, knnDeserialized._classificationMaxDist) self.assertEqual(self.helper._iteration, knnDeserialized._iteration) self.assertEqual(self.helper.trainRecords, knnDeserialized.trainRecords) self.assertEqual(self.helper.anomalyThreshold, knnDeserialized.anomalyThreshold) self.assertEqual(self.helper.cacheSize, knnDeserialized.cacheSize) self.assertEqual(self.helper.classificationVectorType, knnDeserialized.classificationVectorType) self.assertListEqual(self.helper.getLabelResults(), knnDeserialized.getLabelResults()) for i, expected in enumerate(self.helper._recordsCache): actual = knnDeserialized._recordsCache[i] self.assertEqual(expected.ROWID, actual.ROWID) self.assertAlmostEqual(expected.anomalyScore, actual.anomalyScore) self.assertListEqual(expected.anomalyVector, actual.anomalyVector) self.assertListEqual(expected.anomalyLabel, actual.anomalyLabel) self.assertEqual(expected.setByUser, actual.setByUser)
class KNNAnomalyClassifierRegionTest(unittest.TestCase): """KNNAnomalyClassifierRegion unit tests.""" def setUp(self): self.params = dict( trainRecords=10, anomalyThreshold=1.1, cacheSize=10000, k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000) self.helper = KNNAnomalyClassifierRegion(**self.params) def testInit(self): params = dict( trainRecords=100, anomalyThreshold=101, cacheSize=102, classificationVectorType=1, k=1, distanceMethod='rawOverlap', distanceNorm=1, doBinarization=1, replaceDuplicates=0, maxStoredPatterns=1000) helper = KNNAnomalyClassifierRegion(**params) self.assertEqual(helper.trainRecords, params['trainRecords']) self.assertEqual(helper.anomalyThreshold, params['anomalyThreshold']) self.assertEqual(helper.cacheSize, params['cacheSize']) self.assertEqual(helper.classificationVectorType, params['classificationVectorType']) @patch.object(KNNAnomalyClassifierRegion, '_classifyState') @patch.object(KNNAnomalyClassifierRegion, 'getParameter') @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') def testCompute(self, constructRecord, getParam, classifyState): params = { 'trainRecords': 0 } getParam.side_effect = params.get state = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": [1,4,5], "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) constructRecord.return_value = record self.helper.compute(dict(), dict()) classifyState.assert_called_once_with(record) self.assertEqual(self.helper.labelResults, state['anomalyLabel']) def testGetLabels(self): # No _recordsCache self.helper._recordsCache = [] self.assertEqual(self.helper.getLabels(), \ {'isProcessing': False, 'recordLabels': []}) # Invalid ranges self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.getLabels, start=100, end=100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.getLabels, start=-100, end=-100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.getLabels, start=100, end=-100) # Valid no threshold labels values = { 'categoryRecencyList': [4, 5, 7], } self.helper.saved_categories = ['TestCategory'] categoryList = [1, 1, 1] classifier = self.helper._knnclassifier classifier.getParameter = Mock(side_effect=values.get) classifier._knn._categoryList = categoryList results = self.helper.getLabels() self.assertTrue('isProcessing' in results) self.assertTrue('recordLabels' in results) self.assertEqual(len(results['recordLabels']), len(values['categoryRecencyList'])) for record in results['recordLabels']: self.assertTrue(record['ROWID'] in values['categoryRecencyList']) self.assertEqual(record['labels'], self.helper.saved_categories) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testAddLabel(self, classifyState, constructVector, getVector): # Setup Mocks getVector.return_value = numpy.array([0, 0, 0, 1, 0, 0, 1]) knn = self.helper._knnclassifier._knn knn.learn = Mock() # Invalid ranges self.helper._recordsCache = [] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=100, end=100, labelName="test") self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=100, end=100, labelName="test") self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=-100, end=-100, labelName="test") self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.addLabel, start=100, end=-100, labelName="test") # Valid no threshold labels self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=[], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True)] results = self.helper.addLabel(11, 12, "Added") # Verifies records were updated self.assertEqual(results, None) self.assertTrue('Added' in self.helper._recordsCache[1].anomalyLabel) self.assertTrue(self.helper._recordsCache[1].setByUser) # Verifies record added to KNN classifier knn.learn.assert_called_once_with(ANY, ANY, rowID=11) # Verifies records after added label is recomputed classifyState.assert_called_once_with(self.helper._recordsCache[2]) @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testRemoveLabel(self, classifyState, constructClassificationRecord): knn = self.helper._knnclassifier._knn knn._numPatterns = 3 knn._categoryRecencyList = [10, 11, 12] knn.removeIds = Mock(side_effect = self.mockRemoveIds) self.helper._recordsCache = [] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.removeLabels, ) # Invalid ranges self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.removeLabels, start=100, end=100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.removeLabels, start=-100, end=-100) self.helper._recordsCache = [Mock(ROWID=10)] self.assertRaises(HTMPredictionModelInvalidRangeError, self.helper.removeLabels, start=100, end=-100) # Valid no threshold labels self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True)] results = self.helper.removeLabels(11, 12, "Test") self.assertEqual(results, None) self.assertTrue('Test' not in self.helper._recordsCache[1].anomalyLabel) # Verifies records removed from KNN classifier self.assertEqual(knn.removeIds.mock_calls, [call([11]), call([])]) # Verifies records after removed record are updated classifyState.assert_called_once_with(self.helper._recordsCache[2]) @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testRemoveLabelNoFilter(self, classifyState, constructClassificationRecord): knn = self.helper._knnclassifier._knn knn._numPatterns = 3 knn._categoryRecencyList = [10, 11, 12] knn.removeIds = Mock(side_effect=self.mockRemoveIds) # Valid no threshold labels self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True)] results = self.helper.removeLabels(11, 12) self.assertEqual(results, None) self.assertTrue('Test' not in self.helper._recordsCache[1].anomalyLabel) # Verifies records removed from KNN classifier self.assertEqual(knn.removeIds.mock_calls, [call([11]), call([])]) # Verifies records after removed record are updated classifyState.assert_called_once_with(self.helper._recordsCache[2]) @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testSetGetThreshold(self, classifyState): self.helper._recordsCache = [Mock(), Mock(), Mock()] self.helper.setParameter('anomalyThreshold', None, 1.0) self.assertAlmostEqual(self.helper.anomalyThreshold, 1.0) self.assertEqual(len(classifyState.mock_calls), len(self.helper._recordsCache)) self.assertAlmostEqual(self.helper.getParameter('anomalyThreshold'), 1.0) self.assertRaises(Exception, self.helper.setParameter, 'anomalyThreshold', None, 'invalid') @patch.object(KNNAnomalyClassifierRegion, '_classifyState') def testSetGetWaitRecords(self, classifyState): self.helper._recordsCache = [ Mock(ROWID=10, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=11, anomalyLabel=["Test"], setByUser=False), Mock(ROWID=12, anomalyLabel=["Test"], setByUser=True)] self.helper.setParameter('trainRecords', None, 20) self.assertEqual(self.helper.trainRecords, 20) self.assertEqual(len(classifyState.mock_calls), len(self.helper._recordsCache)) self.assertEqual(self.helper.getParameter('trainRecords'), 20) # Test invalid parameter type self.assertRaises(Exception, self.helper.setParameter, 'trainRecords', None, 'invalid') # Test invalid value before first record ROWID in cache state = { "ROWID": 1000, "anomalyScore": 1.0, "anomalyVector": [1,4,5], "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) self.helper._recordsCache = [state] self.assertRaises(Exception, self.helper.setParameter, 'trainRecords', None, 0) @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') def testSetGetWaitRecordsRecalculate(self, getRecord): """ This test ensures that records in classifier are removed when they are no longer being used when the trainRecords is set. """ self.helper.cacheSize = 5 self.helper.anomalyThreshold = 0.8 self.helper._anomalyVectorLength = 20 records = [ Mock(ROWID=10, anomalyLabel=["Test"], anomalyScore=1, setByUser=False, anomalyVector=numpy.array([1,4])), Mock(ROWID=11, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1,2])), Mock(ROWID=12, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1,4])), Mock(ROWID=13, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1,2,6,7])), Mock(ROWID=14, anomalyLabel=["Test"], anomalyScore=1, setByUser=False, anomalyVector=numpy.array([1,10])), Mock(ROWID=15, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1,3])), Mock(ROWID=16, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1,4])), Mock(ROWID=17, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([10])), Mock(ROWID=18, anomalyLabel=["Test"], anomalyScore=0, setByUser=False, anomalyVector=numpy.array([1,4]))] getRecord.side_effect = records for i in records: self.helper.compute(dict(), dict()) self.assertEqual(self.helper._knnclassifier._knn._numPatterns, 6) self.assertEqual( self.helper._knnclassifier.getParameter('categoryRecencyList'), [10, 12, 14, 16, 17, 18], "Classifier incorrectly classified test records." ) # Now set trainRecords and should remove the labels outside of cache # and relabel points. self.helper.setParameter('trainRecords', None, 14) self.assertEqual(self.helper._knnclassifier._knn._numPatterns, 2) self.assertEqual( self.helper._knnclassifier.getParameter('categoryRecencyList'), [14, 17], "Classifier incorrectly reclassified test records after setting " "trainRecords") @patch.object(KNNAnomalyClassifierRegion, '_addRecordToKNN') @patch.object(KNNAnomalyClassifierRegion, '_deleteRecordsFromKNN') @patch.object(KNNAnomalyClassifierRegion, '_recomputeRecordFromKNN') @patch.object(KNNAnomalyClassifierRegion, '_categoryToLabelList') def testUpdateState(self, toLabelList, recompute, deleteRecord, addRecord): record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "", "anomalyLabel": ["Label"], "setByUser": False } # Test record not labeled and not above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.trainRecords = 0 self.helper.anomalyThreshold = 1.1 toLabelList.return_value = [] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, []) deleteRecord.assert_called_once_with([state]) # Test record not labeled and above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 0.5 toLabelList.return_value = [] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL]) addRecord.assert_called_once_with(state) # Test record not labeled and above threshold during wait period deleteRecord.reset_mock() addRecord.reset_mock() self.helper.trainRecords = 10 self.helper.anomalyThreshold = 0.5 toLabelList.return_value = [] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, []) self.assertTrue(not addRecord.called) # Test record labeled and not above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.trainRecords = 0 self.helper.anomalyThreshold = 1.1 toLabelList.return_value = ["Label"] state = _CLAClassificationRecord(**record) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, ["Label"]) self.assertTrue(not addRecord.called) # Test setByUser deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 1.1 toLabelList.return_value = ["Label 2"] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, [recordCopy["anomalyLabel"][0], toLabelList.return_value[0]]) addRecord.assert_called_once_with(state) # Test removal of above threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 1.1 toLabelList.return_value = [] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True recordCopy['anomalyLabel'] = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL, KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL + \ KNNAnomalyClassifierRegion.AUTO_TAG] state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, []) # Auto classified threshold deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 1.1 toLabelList.return_value = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True recordCopy['anomalyLabel'] = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL] state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL + \ KNNAnomalyClassifierRegion.AUTO_TAG]) addRecord.assert_called_once_with(state) # Test precedence of threshold label above auto threshold label deleteRecord.reset_mock() addRecord.reset_mock() self.helper.anomalyThreshold = 0.8 toLabelList.return_value = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL, KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL + \ KNNAnomalyClassifierRegion.AUTO_TAG] recordCopy = copy.deepcopy(record) recordCopy['setByUser'] = True recordCopy['anomalyLabel'] = \ [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL] state = _CLAClassificationRecord(**recordCopy) self.helper._classifyState(state) self.assertEqual(state.anomalyLabel, [KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL]) addRecord.assert_called_once_with(state) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') def testAddRecordToKNN(self, getAnomalyVector): getAnomalyVector.return_value = numpy.array([0, 1, 0, 0, 1, 0, 1, 1]) values = { 'categoryRecencyList': [1, 2, 3] } classifier = self.helper._knnclassifier classifier.getParameter = Mock(side_effect=values.get) classifier._knn.learn = Mock() classifier._knn.prototypeSetCategory = Mock() state = { "ROWID": 5, "anomalyScore": 1.0, "anomalyVector": numpy.array([1, 5, 7, 8]), "anomalyLabel": ["Label"], "setByUser": False } record = _CLAClassificationRecord(**state) # Test with record not already in KNN self.helper._addRecordToKNN(record) classifier._knn.learn.assert_called_once_with(getAnomalyVector.return_value, ANY, rowID=state['ROWID']) self.assertTrue(not classifier._knn.prototypeSetCategory.called) classifier._knn.learn.reset_mock() # Test with record already in KNN values = { 'categoryRecencyList': [1, 2, 3, 5] } classifier.getParameter.side_effect = values.get self.helper._addRecordToKNN(record) classifier._knn.prototypeSetCategory.assert_called_once_with( state['ROWID'], ANY) self.assertTrue(not classifier._knn.learn.called) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') def testDeleteRangeFromKNN(self, getAnomalyVector): getAnomalyVector.return_value = "Vector" values = { 'categoryRecencyList': [1, 2, 3] } classifier = self.helper._knnclassifier classifier.getParameter = Mock(side_effect=values.get) classifier._knn._numPatterns = len(values['categoryRecencyList']) classifier._knn.removeIds = Mock(side_effect=self.mockRemoveIds) # Test with record not already in KNN self.helper._deleteRangeFromKNN(start=1, end=3) classifier._knn.removeIds.assert_called_once_with([1, 2]) classifier._knn.removeIds.reset_mock() # Test with record already in KNN values = { 'categoryRecencyList': [1, 2, 3, 5] } classifier.getParameter.side_effect = values.get self.helper._deleteRangeFromKNN(start=1) classifier._knn.removeIds.assert_called_once_with([1, 2, 3, 5]) @patch.object(KNNAnomalyClassifierRegion, '_getStateAnomalyVector') def testRecomputeRecordFromKNN(self, getAnomalyVector): getAnomalyVector.return_value = "Vector" self.helper.trainRecords = 0 values = { 'categoryRecencyList': [1, 2, 3, 5, 6, 7, 8, 9], 'latestDists': numpy.array([0.7, 0.2, 0.5, 1, 0.3, 0.2, 0.1]), 'categories': ['A','B','C','D','E','F','G'] } classifier = self.helper._knnclassifier classifier.getLatestDistances = Mock(return_value=values['latestDists']) classifier.getCategoryList = Mock(return_value=values['categories']) classifier.getParameter = Mock(side_effect=values.get) classifier.setParameter = Mock() classifier.compute = Mock() state = { "ROWID": 5, "anomalyScore": 1.0, "anomalyVector": "", "anomalyLabel": ["Label"], "setByUser": False } record = _CLAClassificationRecord(**state) # Test finding best category before record - exists self.helper._classificationMaxDist = 0.4 self.helper._autoDetectWaitRecords = 0 result = self.helper._recomputeRecordFromKNN(record) self.assertEqual(result, 'B') # Test finding best category before record - does not exists self.helper._classificationMaxDist = 0.1 result = self.helper._recomputeRecordFromKNN(record) self.assertEqual(result, None) # Test finding best category before record - not record before record.ROWID = 0 self.helper._classificationMaxDist = 0.1 result = self.helper._recomputeRecordFromKNN(record) self.assertEqual(result, None) def testConstructClassificationVector(self): modelParams = { '__numRunCalls': 0 } spVals = { 'params': { 'activeOutputCount': 5 }, 'output': { 'bottomUpOut': numpy.array([1, 1, 0, 0, 1]) } } tpVals = { 'params': { 'cellsPerColumn': 2, 'columnCount': 2 }, 'output': { 'lrnActive': numpy.array([1, 0, 0, 1]), 'topDownOut': numpy.array([1, 0, 0, 0, 1]) } } inputs = dict( spBottomUpOut=spVals['output']['bottomUpOut'], tpTopDownOut=tpVals['output']['topDownOut'], tpLrnActiveStateT=tpVals['output']['lrnActive'] ) self.helper._activeColumnCount = 5 # Test TM Cell vector self.helper.classificationVectorType = 1 vector = self.helper._constructClassificationRecord(inputs) self.assertEqual(vector.anomalyVector, tpVals['output']['lrnActive'].nonzero()[0].tolist()) # Test SP and TM Column Error vector self.helper.classificationVectorType = 2 self.helper._prevPredictedColumns = numpy.array( [1, 0, 0, 0, 1]).nonzero()[0] vector = self.helper._constructClassificationRecord(inputs) self.assertEqual(vector.anomalyVector, [0, 1, 4]) self.helper._prevPredictedColumns = numpy.array( [1, 0, 1, 0, 0]).nonzero()[0] vector = self.helper._constructClassificationRecord(inputs) self.assertEqual(vector.anomalyVector, [0, 1, 4, 7]) self.helper.classificationVectorType = 3 self.assertRaises(TypeError, self.helper._constructClassificationRecord, inputs) @patch.object(KNNAnomalyClassifierRegion ,'_classifyState') @patch.object(KNNAnomalyClassifierRegion, '_constructClassificationRecord') def testCompute(self, createRecord, updateState): state = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": numpy.array([1, 0, 0, 0, 1]), "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) createRecord.return_value = record inputs = dict() outputs= dict() # Test add first record self.helper.cacheSize = 10 self.helper.trainRecords = 0 self.helper._recordsCache = [] self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) updateState.assert_called_once_with(self.helper._recordsCache[-1]) # Test add record before wait records updateState.reset_mock() self.helper.cacheSize = 10 self.helper.trainRecords = 10 self.helper._recordsCache = [] self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 2) self.assertTrue(not updateState.called) # Test exceeded cache length updateState.reset_mock() self.helper.cacheSize = 1 self.helper._recordsCache = [] self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) self.helper.compute(inputs, outputs) self.assertEqual(self.helper._recordsCache[-1], record) self.assertEqual(len(self.helper._recordsCache), 1) self.assertTrue(not updateState.called) def testCategoryToList(self): result = self.helper._categoryToLabelList(None) self.assertEqual(result, []) self.helper.saved_categories = ['A', 'B', 'C'] result = self.helper._categoryToLabelList(1) self.assertEqual(result, ['A']) result = self.helper._categoryToLabelList(4) self.assertEqual(result, ['C']) result = self.helper._categoryToLabelList(5) self.assertEqual(result, ['A','C']) def testGetAnomalyVector(self): state = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": [1,4,5], "anomalyLabel": "Label" } record = _CLAClassificationRecord(**state) self.helper._anomalyVectorLength = 10 vector = self.helper._getStateAnomalyVector(record) self.assertEqual(len(vector), self.helper._anomalyVectorLength) self.assertEqual(vector.nonzero()[0].tolist(), record.anomalyVector) # Tests for configuration # =========================================================================== def testSetState(self): # No Version set state = dict(_classificationDelay=100) state['_knnclassifierProps'] = self.params self.helper._vectorType = None self.helper.__setstate__(state) self.assertEqual(self.helper.classificationVectorType, 1) self.assertEqual(self.helper._version, KNNAnomalyClassifierRegion.__VERSION__) # Version 1 state = dict(_version=1, _classificationDelay=100) state['_knnclassifierProps'] = self.params self.helper.__setstate__(state) self.assertEqual(self.helper._version, KNNAnomalyClassifierRegion.__VERSION__) # Invalid Version state = dict(_version="invalid") state['_knnclassifierProps'] = self.params self.assertRaises(Exception, self.helper.__setstate__, state) # Tests for _HTMClassificationRecord class # =========================================================================== def testCLAClassificationRecord(self): record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label" } state = _CLAClassificationRecord(**record) self.assertEqual(state.ROWID, record['ROWID']) self.assertEqual(state.anomalyScore, record['anomalyScore']) self.assertEqual(state.anomalyVector, record['anomalyVector']) self.assertEqual(state.anomalyLabel, record['anomalyLabel']) self.assertEqual(state.setByUser, False) record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label", "setByUser": True } state = _CLAClassificationRecord(**record) self.assertEqual(state.ROWID, record['ROWID']) self.assertEqual(state.anomalyScore, record['anomalyScore']) self.assertEqual(state.anomalyVector, record['anomalyVector']) self.assertEqual(state.anomalyLabel, record['anomalyLabel']) self.assertEqual(state.setByUser, record['setByUser']) def testCLAClassificationRecordGetState(self): record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label", "setByUser": False } state = _CLAClassificationRecord(**record) self.assertEqual(state.__getstate__(), record) def testCLAClassificationRecordSetState(self): record = { "ROWID": None, "anomalyScore": None, "anomalyVector": None, "anomalyLabel": None, "setByUser": None } state = _CLAClassificationRecord(**record) record = { "ROWID": 0, "anomalyScore": 1.0, "anomalyVector": "Vector", "anomalyLabel": "Label", "setByUser": False } state.__setstate__(record) self.assertEqual(state.ROWID, record['ROWID']) self.assertEqual(state.anomalyScore, record['anomalyScore']) self.assertEqual(state.anomalyVector, record['anomalyVector']) self.assertEqual(state.anomalyLabel, record['anomalyLabel']) self.assertEqual(state.setByUser, record['setByUser']) def mockRemoveIds(self, ids): self.helper._knnclassifier._knn._numPatterns -= len(ids) knnClassifier = self.helper._knnclassifier for idx in ids: if idx in self.helper._knnclassifier.getParameter('categoryRecencyList'): knnClassifier.getParameter('categoryRecencyList').remove(idx)