def aggregate_results(cls, results):
        """
        Aggregate multiple processes' "run_epoch" results into a single result.

        :param results:
            A list of return values from run_epoch from different processes.
        :type results: list

        :return:
            A single result dict with results aggregated.
        :rtype: dict
        """
        ret = cls.aggregate_validation_results(results)

        extra_val_aggregated = []
        for i in range(len(ret["extra_val_results"])):
            timestep = ret["extra_val_results"][i][0]
            val_results = [process_result["extra_val_results"][i][1]
                           for process_result in results]
            extra_val_aggregated.append(
                (timestep, aggregate_eval_results(val_results))
            )
        ret["extra_val_results"] = extra_val_aggregated

        return ret
示例#2
0
    def aggregate_results(cls, results):
        ret = super().aggregate_results(results)

        extra_val_aggregated = []
        for i in range(len(ret["extra_val_results"])):
            timestep = ret["extra_val_results"][i][0]
            val_results = [
                process_result["extra_val_results"][i][1]
                for process_result in results
            ]
            extra_val_aggregated.append(
                (timestep, aggregate_eval_results(val_results)))
        ret["extra_val_results"] = extra_val_aggregated

        return ret
示例#3
0
    def _train(self):
        self.logger.debug(
            f"_train: {self._trial_info.trial_name}({self.iteration})")
        try:
            # Check if restore checkpoint file fulfills the stop criteria on first run
            if self._first_run:
                self._first_run = False
                if self._restored and self._should_stop():
                    self.logger.warning(
                        f"Restored checkpoint file '{self._checkpoint_file}' fulfills "
                        f"stop criteria without additional training.")
                    return {
                        # do not train or log results, just stop
                        RESULT_DUPLICATE: True,
                        DONE: True
                    }

            status = []
            for w in self.procs:
                status.append(w.run_epoch.remote())

            # Wait for remote functions and check for errors
            # Aggregate the results from all processes
            if ray_utils.check_for_failure(status):
                results = ray.get(status)

                ret = copy.deepcopy(results[0])
                ret.update(aggregate_eval_results(results))

                self._process_result(ret)

                # Check if we should stop the experiment
                ret[DONE] = self._should_stop()

                return ret

            err_msg = (f"{self._trial_info.trial_name}({self.iteration}): "
                       f"One of the remote workers failed during training")
            self.logger.error(err_msg)
            raise RuntimeError(err_msg)
        except Exception:
            self._kill_workers()
            raise
    def aggregate_validation_results(cls, results):
        """
        Aggregate multiple processes' "validate" results into a single result.

        This method exists separately from "aggregate_results" to support
        running validation outside of "run_epoch" and aggregating those results
        without causing error. Subclasses / mixins implementing
        "aggregate_results" may expect all results to have the extra data
        appended during run_epoch.

        :param results:
            A list of return values from validate from different processes.
        :type results: list

        :return:
            A single result dict with results aggregated.
        :rtype: dict
        """
        result = copy.deepcopy(results[0])
        result.update(aggregate_eval_results(results))
        return result
 def _aggregate_validation_results(cls, results):
     result = copy.copy(results[0])
     result.update(aggregate_eval_results(results))
     return result