示例#1
0
  def _allocateSpatialFDR(self, rfInput):
    """Allocate the spatial pooler instance."""
    if self._sfdr:
      return

    # Retrieve the necessary extra arguments that were handled automatically
    autoArgs = dict((name, getattr(self, name))
                     for name in self._spatialArgNames)
    autoArgs.pop('coincidencesShape')
    autoArgs.pop('inputShape')
    autoArgs.pop('inputBorder')
    autoArgs.pop('coincInputRadius')
    autoArgs.pop('cloneMap')
    autoArgs.pop('numCloneMasters')

    coincidencesShape = (self.columnCount, 1)
    inputShape = (1, self.inputWidth)
    inputBorder = inputShape[1]/2
    if inputBorder*2 >= inputShape[1]:
      inputBorder -= 1
    coincInputRadius = inputShape[1]/2

    cloneMap, numCloneMasters = fdru.makeCloneMap(
        columnsShape=coincidencesShape,
        outputCloningWidth=coincidencesShape[1],
        outputCloningHeight=coincidencesShape[0]
      )

    self._sfdr = FDRCSpatial2.FDRCSpatial2(
                              # These parameters are standard defaults for SPRegion
                              # They can be overridden by explicit calls to
                              # getParameter
                              cloneMap=cloneMap,
                              numCloneMasters=numCloneMasters,
                              coincidencesShape=coincidencesShape,
                              inputShape=inputShape,
                              inputBorder=inputBorder,
                              coincInputRadius = coincInputRadius,
                              **autoArgs)

    self._sfdr.setStoreDenseOutput(self.storeDenseOutput)
示例#2
0
def testSPFile():
    """ Run test on the data file - the file has records previously encoded.
  """

    spSize = 2048
    spSet = 40

    poolPct = 0.5

    pattern = [50, 1000]
    doLearn = True

    PLOT_PRECISION = 100.0
    distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))

    inputs = []

    #file = open('~/Desktop/ExperimentResults/sampleArtificial.csv', 'rb')
    #elemSize = 400
    #numSet = 42

    #file = open('~/Desktop/ExperimentResults/sampleDataBasilOneField.csv', 'rb')
    #elemSize = 499
    #numSet = 7

    outdir = '~/Desktop/ExperimentResults/Basil100x21'
    inputFile = outdir + '.csv'
    file = open(inputFile, 'rb')

    elemSize = 100
    numSet = 21

    reader = csv.reader(file)

    for row in reader:
        input = np.array(map(float, row), dtype=realDType)
        if len(input.nonzero()[0]) != numSet:
            continue

        inputs.append(input.copy())

    file.close()

    # Setup a SP
    sp = FDRCSpatial2.FDRCSpatial2(coincidencesShape=(spSize, 1),
                                   inputShape=(1, elemSize),
                                   inputBorder=(elemSize - 1) / 2,
                                   coincInputRadius=elemSize / 2,
                                   numActivePerInhArea=spSet,
                                   spVerbosity=0,
                                   stimulusThreshold=0,
                                   synPermConnected=0.10,
                                   seed=1,
                                   coincInputPoolPct=poolPct,
                                   globalInhibition=True)

    cleanPlot = False

    doLearn = False

    print 'Finished reading file, inputs/outputs to process =', len(inputs)

    size = len(inputs)

    for iter in xrange(100):

        print 'Iteration', iter

        # Learn
        if iter != 0:
            for learnRecs in xrange(pattern[0]):
                ind = np.random.random_integers(0, size - 1, 1)[0]
                sp.compute(inputs[ind], learn=True, infer=False)

        # Test
        for _ in xrange(pattern[1]):
            rand1 = np.random.random_integers(0, size - 1, 1)[0]
            rand2 = np.random.random_integers(0, size - 1, 1)[0]

            output1 = sp.compute(inputs[rand1], learn=False, infer=True).copy()
            output2 = sp.compute(inputs[rand2], learn=False, infer=True).copy()

            outDist = (abs(output1 - output2) > 0.1)
            intOutDist = int(outDist.sum() / 2 + 0.1)

            inDist = (abs(inputs[rand1] - inputs[rand2]) > 0.1)
            intInDist = int(inDist.sum() / 2 + 0.1)

            if intInDist != numSet or intOutDist != spSet:
                print rand1, rand2, '-', intInDist, intOutDist

            x = int(PLOT_PRECISION * intOutDist / spSet)
            y = int(PLOT_PRECISION * intInDist / numSet)
            if distribMatrix[x, y] < 0.1:
                distribMatrix[x, y] = 3
            else:
                if distribMatrix[x, y] < 10:
                    distribMatrix[x, y] += 1

        if True:
            plt.imshow(distribMatrix, origin='lower', interpolation="nearest")
            plt.ylabel('SP (%d/%d) distance in pct' % (spSize, spSet))
            plt.xlabel('Input (%d/%d) distance in pct' % (elemSize, numSet))

            title = 'SP distribution'
            title += ', iter = %d' % iter
            title += ', Pct =%f' % poolPct

            plt.suptitle(title, fontsize=12)

            #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosArtData', '%s' % iter))
            plt.savefig(os.path.join(outdir, '%s' % iter))

            plt.clf()
            distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))
示例#3
0
def testSPNew():
    """ New version of the test"""

    elemSize = 400
    numSet = 42

    addNear = True
    numRecords = 1000

    wantPlot = False

    poolPct = 0.5
    itr = 5

    pattern = [60, 1000]
    doLearn = True
    start = 1
    learnIter = 0
    noLearnIter = 0

    numLearns = 0
    numTests = 0

    numIter = 1

    numGroups = 1000

    PLOT_PRECISION = 100.0
    distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))

    inputs = generateRandomInput(numGroups, elemSize, numSet)

    # Setup a SP
    sp = FDRCSpatial2.FDRCSpatial2(coincidencesShape=(2048, 1),
                                   inputShape=(1, elemSize),
                                   inputBorder=elemSize / 2 - 1,
                                   coincInputRadius=elemSize / 2,
                                   numActivePerInhArea=40,
                                   spVerbosity=0,
                                   stimulusThreshold=0,
                                   synPermConnected=0.12,
                                   seed=1,
                                   coincInputPoolPct=poolPct,
                                   globalInhibition=True)

    cleanPlot = False

    for i in xrange(numRecords):
        input1 = getRandomWithMods(inputs, 4)
        if i % 2 == 0:
            input2 = getRandomWithMods(inputs, 4)
        else:
            input2 = input1.copy()
            input2 = modifyBits(input2, 21)

        inDist = (abs(input1 - input2) > 0.1)
        intInDist = int(inDist.sum() / 2 + 0.1)
        #print intInDist

        if start == 0:
            doLearn = True
            learnIter += 1
            if learnIter == pattern[start]:
                numLearns += 1
                start = 1
                noLearnIter = 0
        elif start == 1:
            doLearn = False
            noLearnIter += 1
            if noLearnIter == pattern[start]:
                numTests += 1
                start = 0
                learnIter = 0
                cleanPlot = True

        output1 = sp.compute(input1, learn=doLearn, infer=False).copy()
        output2 = sp.compute(input2, learn=doLearn, infer=False).copy()
        time.sleep(0.001)

        outDist = (abs(output1 - output2) > 0.1)
        intOutDist = int(outDist.sum() / 2 + 0.1)

        if not doLearn and intOutDist < 2 and intInDist > 10:
          """
      sp.spVerbosity = 10
      sp.compute(input1, learn=doLearn, infer=False)
      sp.compute(input2, learn=doLearn, infer=False)
      sp.spVerbosity = 0

      
      print 'Elements has very small SP distance: %d' % intOutDist
      print output1.nonzero()
      print output2.nonzero()
      print sp._firingBoostFactors[output1.nonzero()[0]]
      print sp._synPermBoostFactors[output1.nonzero()[0]]
      print 'Input elements distance is %d' % intInDist
      print input1.nonzero()
      print input2.nonzero()
      sys.stdin.readline()
      """

        if not doLearn:
            x = int(PLOT_PRECISION * intOutDist / 40.0)
            y = int(PLOT_PRECISION * intInDist / 42.0)
            if distribMatrix[x, y] < 0.1:
                distribMatrix[x, y] = 3
            else:
                if distribMatrix[x, y] < 10:
                    distribMatrix[x, y] += 1

        #print i

        # If we don't want a plot, just continue
        if wantPlot and cleanPlot:
            plt.imshow(distribMatrix, origin='lower', interpolation="nearest")
            plt.ylabel('SP (2048/40) distance in %')
            plt.xlabel('Input (400/42) distance in %')

            title = 'SP distribution'

            #if doLearn:
            #  title += ', leaning ON'
            #else:
            #  title +=  ', learning OFF'

            title += ', learn sets = %d' % numLearns
            title += ', test sets = %d' % numTests
            title += ', iter = %d' % numIter
            title += ', groups = %d' % numGroups
            title += ', Pct =%f' % poolPct

            plt.suptitle(title, fontsize=12)
            #plt.show()

            plt.savefig(
                os.path.join('~/Desktop/ExperimentResults/videosNew',
                             '%s' % i))

            plt.clf()
            distribMatrix = np.zeros((PLOT_PRECISION + 1, PLOT_PRECISION + 1))
            cleanPlot = False
示例#4
0
def testSP():
    """ Run a SP test
  """

    elemSize = 400
    numSet = 42

    addNear = True
    numRecords = 2

    wantPlot = True

    poolPct = 0.5
    itr = 1
    doLearn = True

    while numRecords < 3:

        # Setup a SP
        sp = FDRCSpatial2.FDRCSpatial2(coincidencesShape=(2048, 1),
                                       inputShape=(1, elemSize),
                                       inputBorder=elemSize / 2 - 1,
                                       coincInputRadius=elemSize / 2,
                                       numActivePerInhArea=40,
                                       spVerbosity=0,
                                       stimulusThreshold=0,
                                       seed=1,
                                       coincInputPoolPct=poolPct,
                                       globalInhibition=True)

        # Generate inputs using rand()
        inputs = generateRandomInput(numRecords, elemSize, numSet)
        if addNear:
            # Append similar entries (distance of 1)
            appendInputWithNSimilarValues(inputs, 42)

        inputSize = len(inputs)
        print 'Num random records = %d, inputs to process %d' % (numRecords,
                                                                 inputSize)

        # Run a number of iterations, with learning on or off,
        # retrieve results from the last iteration only
        outputs = np.zeros((inputSize, 2048))

        numIter = 1
        if doLearn:
            numIter = itr

        for iter in xrange(numIter):
            for i in xrange(inputSize):
                time.sleep(0.001)
                if iter == numIter - 1:
                    outputs[i] = sp.compute(inputs[i],
                                            learn=doLearn,
                                            infer=False)
                    #print outputs[i].sum(), outputs[i]
                else:
                    sp.compute(inputs[i], learn=doLearn, infer=False)

        # Build a plot from the generated input and output and display it
        distribMatrix = generatePlot(outputs, inputs)

        # If we don't want a plot, just continue
        if wantPlot:
            plt.imshow(distribMatrix, origin='lower', interpolation="nearest")
            plt.ylabel('SP (2048/40) distance in %')
            plt.xlabel('Input (400/42) distance in %')

            title = 'SP distribution'
            if doLearn:
                title += ', leaning ON'
            else:
                title += ', learning OFF'

            title += ', inputs = %d' % len(inputs)
            title += ', iterations = %d' % numIter
            title += ', poolPct =%f' % poolPct

            plt.suptitle(title, fontsize=12)
            plt.show()
            #plt.savefig(os.path.join('~/Desktop/ExperimentResults/videos5', '%s' % numRecords))
            #plt.clf()

        numRecords += 1

    return
示例#5
0
    def testInhibition(self):
        """
    Test if the firing number of coincidences after inhibition
    equals spatial poolernumActivePerInhArea.
    """
        # Miscellaneous variables:
        # n, w:                 n, w of encoders
        # inputLen:             Length of binary input
        # synPermConnected:     Spatial pooler synPermConnected
        # synPermActiveInc:     Spatial pooler synPermActiveInc
        # connectPct:           Initial connect percentage of permanences
        # coincidencesShape:    Number of spatial pooler coincidences
        # numActivePerInhArea:  Spatial pooler numActivePerInhArea
        # stimulusThreshold:    Spatial pooler stimulusThreshold
        # spSeed:               Spatial pooler for initial permanences
        # stimulusThresholdInh: Parameter for inhibition, default value 0.00001
        # kDutyCycleFactor:     kDutyCycleFactor for dutyCycleTieBreaker in
        #                       Inhibition
        # spVerbosity:          Verbosity to print other sp initial parameters
        # testIter:             Testing iterations
        n = 100
        w = 15
        inputLen = 300
        coincidencesShape = 2048
        numActivePerInhArea = 40
        stimulusThreshold = 0
        spSeed = 1956
        stimulusThresholdInh = 0.00001
        kDutyCycleFactor = 0.01
        spVerbosity = 0
        testIter = 100

        spTest = FDRCSpatial2.FDRCSpatial2(
            coincidencesShape=(coincidencesShape, 1),
            inputShape=(1, inputLen),
            inputBorder=inputLen / 2 - 1,
            coincInputRadius=inputLen / 2,
            numActivePerInhArea=numActivePerInhArea,
            spVerbosity=spVerbosity,
            stimulusThreshold=stimulusThreshold,
            seed=spSeed)
        initialPermanence = spTest._initialPermanence()
        spTest._masterPotentialM, spTest._masterPermanenceM = (
            spTest._makeMasterCoincidences(spTest.numCloneMasters,
                                           spTest._coincRFShape,
                                           spTest.coincInputPoolPct,
                                           initialPermanence, spTest.random))

        spTest._updateInhibitionObj()
        boostFactors = numpy.ones(coincidencesShape)

        for i in range(testIter):
            spTest._iterNum = i
            # random binary input
            input_ = numpy.zeros((1, inputLen))
            nonzero = numpy.random.random(inputLen)
            input_[0][numpy.where(nonzero < float(w) / float(n))] = 1

            # overlap step
            spTest._computeOverlapsFP(
                input_, stimulusThreshold=spTest.stimulusThreshold)
            spTest._overlaps *= boostFactors
            onCellIndices = numpy.where(spTest._overlaps > 0)
            spTest._onCells.fill(0)
            spTest._onCells[onCellIndices] = 1
            denseOn = spTest._onCells

            # update _dutyCycleBeforeInh
            spTest.dutyCyclePeriod = min(i + 1, 1000)
            spTest._dutyCycleBeforeInh = (
                (spTest.dutyCyclePeriod - 1) * spTest._dutyCycleBeforeInh +
                denseOn) / spTest.dutyCyclePeriod
            dutyCycleTieBreaker = spTest._dutyCycleAfterInh.copy()
            dutyCycleTieBreaker *= kDutyCycleFactor

            # inhibition step
            numOn = spTest._inhibitionObj.compute(
                spTest._overlaps + dutyCycleTieBreaker,
                spTest._onCellIndices,
                stimulusThresholdInh,  # stimulusThresholdInh
                max(spTest._overlaps) / 1000,  # addToWinners
            )
            # update _dutyCycleAfterInh
            spTest._onCells.fill(0)
            onCellIndices = spTest._onCellIndices[0:numOn]
            spTest._onCells[onCellIndices] = 1
            denseOn = spTest._onCells
            spTest._dutyCycleAfterInh = (
                ((spTest.dutyCyclePeriod - 1) * spTest._dutyCycleAfterInh +
                 denseOn) / spTest.dutyCyclePeriod)

            # learning step
            spTest._adaptSynapses(onCellIndices, [], input_)

            # update boostFactor
            spTest._updateBoostFactors()
            boostFactors = spTest._firingBoostFactors

            # update dutyCycle and boost
            if ((spTest._iterNum + 1) % 50) == 0:
                spTest._updateInhibitionObj()
                spTest._updateMinDutyCycles(spTest._dutyCycleBeforeInh,
                                            spTest.minPctDutyCycleBeforeInh,
                                            spTest._minDutyCycleBeforeInh)
                spTest._updateMinDutyCycles(spTest._dutyCycleAfterInh,
                                            spTest.minPctDutyCycleAfterInh,
                                            spTest._minDutyCycleAfterInh)

            # test numOn and spTest.numActivePerInhArea
            self.assertEqual(
                numOn, spTest.numActivePerInhArea,
                "Error at input %s, actual numOn are: %i, "
                "numActivePerInhAre is: %s" % (i, numOn, numActivePerInhArea))
示例#6
0
    def frequency(self,
                  n=15,
                  w=7,
                  coincidencesShape=2048,
                  numActivePerInhArea=40,
                  stimulusThreshold=0,
                  spSeed=1,
                  spVerbosity=0,
                  numColors=2,
                  seed=42,
                  minVal=0,
                  maxVal=10,
                  encoder='category',
                  forced=True):
        """ Helper function that tests whether the SP predicts the most
    frequent record """

        print "\nRunning SP overlap test..."
        print encoder, 'encoder,', 'Random seed:', seed, 'and', numColors, 'colors'
        #Setting up SP and creating training patterns

        # Instantiate Spatial Pooler
        spImpl = FDRCSpatial2.FDRCSpatial2(
            coincidencesShape=(coincidencesShape, 1),
            inputShape=(1, n),
            inputBorder=(n - 2) / 2,
            coincInputRadius=n / 2,
            numActivePerInhArea=numActivePerInhArea,
            spVerbosity=spVerbosity,
            stimulusThreshold=stimulusThreshold,
            coincInputPoolPct=0.5,
            seed=spSeed,
            spReconstructionParam='dutycycle',
        )
        rnd.seed(seed)
        numpy.random.seed(seed)

        colors = []
        coincs = []
        reUsedCoincs = []
        spOutput = []
        patterns = set([])

        # Setting up the encodings
        if encoder == 'scalar':
            enc = scalar.ScalarEncoder(
                name='car',
                w=w,
                n=n,
                minval=minVal,
                maxval=maxVal,
                periodic=False,
                forced=True
            )  # forced: it's strongly recommended to use w>=21, in the example we force skip the check for readibility
            for y in xrange(numColors):
                temp = enc.encode(rnd.random() * maxVal)
                colors.append(numpy.array(temp, dtype=realDType))
        else:
            for y in xrange(numColors):
                sdr = numpy.zeros(n, dtype=realDType)
                # Randomly setting w out of n bits to 1
                sdr[rnd.sample(xrange(n), w)] = 1
                colors.append(sdr)

        # Training the sp
        print 'Starting to train the sp on', numColors, 'patterns'
        startTime = time.time()
        for i in xrange(numColors):
            spInput = colors[i]
            onCells = spImpl.compute(spInput, learn=True, infer=False)
            spOutput.append(onCells.tolist())
            activeCoincIndices = set(onCells.nonzero()[0])

            # Checking if any of the active cells have been previously active
            reUsed = activeCoincIndices.intersection(patterns)

            if len(reUsed) == 0:
                # The set of all coincidences that have won at least once
                coincs.append((i, activeCoincIndices, colors[i]))
            else:
                reUsedCoincs.append((i, activeCoincIndices, colors[i]))

            # Adding the active cells to the set of coincs that have been active at
            # least once
            patterns.update(activeCoincIndices)

            if (i + 1) % 100 == 0:
                print 'Record number:', i + 1

                print "Elapsed time: %.2f seconds" % (time.time() - startTime)
                print len(reUsedCoincs), "re-used coinc(s),"

        # Check if results match expectations
        summ = []
        for z in coincs:
            summ.append(
                sum([len(z[1].intersection(y[1])) for y in reUsedCoincs]))

        zeros = len([x for x in summ if x == 0])
        factor = max(summ) * len(summ) / sum(summ)
        if len(reUsed) < 10:
            self.assertLess(
                factor, 30,
                "\nComputed factor: %d\nExpected Less than %d" % (factor, 30))
            self.assertLess(
                zeros, 0.99 * len(summ),
                "\nComputed zeros: %d\nExpected Less than %d" %
                (zeros, 0.99 * len(summ)))

        else:
            self.assertLess(
                factor, 8,
                "\nComputed factor: %d\nExpected Less than %d" % (factor, 8))
            self.assertLess(
                zeros, 12,
                "\nComputed zeros: %d\nExpected Less than %d" % (zeros, 12))
示例#7
0
    def _runLearnInference(self,
                           n=30,
                           w=15,
                           coincidencesShape=2048,
                           numActivePerInhArea=40,
                           spSeed=1951,
                           spVerbosity=0,
                           numTrainingRecords=100,
                           seed=42):
        # Instantiate two identical spatial pooler. One will be used only for
        # learning. The other will be trained with identical records, but with
        # random inference calls thrown in
        spLearnOnly = FDRCSpatial2.FDRCSpatial2(
            coincidencesShape=(coincidencesShape, 1),
            inputShape=(1, n),
            inputBorder=n / 2 - 1,
            coincInputRadius=n / 2,
            numActivePerInhArea=numActivePerInhArea,
            spVerbosity=spVerbosity,
            seed=spSeed,
            synPermInactiveDec=0.01,
            synPermActiveInc=0.2,
        )

        spLearnInfer = FDRCSpatial2.FDRCSpatial2(
            coincidencesShape=(coincidencesShape, 1),
            inputShape=(1, n),
            inputBorder=n / 2 - 1,
            coincInputRadius=n / 2,
            numActivePerInhArea=numActivePerInhArea,
            spVerbosity=spVerbosity,
            seed=spSeed,
            synPermInactiveDec=0.01,
            synPermActiveInc=0.2,
        )

        random.seed(seed)
        np.random.seed(seed)

        # Build up training set with numTrainingRecords patterns
        inputs = []  # holds post-encoded input patterns
        for i in xrange(numTrainingRecords):
            inputVector = np.zeros(n, dtype=realDType)
            inputVector[random.sample(xrange(n), w)] = 1
            inputs.append(inputVector)

        # Train each SP with identical inputs
        startTime = time.time()

        random.seed(seed)
        np.random.seed(seed)
        for i in xrange(numTrainingRecords):
            if spVerbosity > 0:
                print "Input #%d" % i
            encodedInput = inputs[i]

            spLearnOnly.compute(encodedInput, learn=True, infer=False)

        random.seed(seed)
        np.random.seed(seed)
        for i in xrange(numTrainingRecords):
            if spVerbosity > 0:
                print "Input #%d" % i
            encodedInput = inputs[i]
            spLearnInfer.compute(encodedInput, learn=True, infer=False)

        print "\nElapsed time: %.2f seconds\n" % (time.time() - startTime)

        # Test that both SP"s are identical by checking learning stats
        # A more in depth test would check all the coincidences, duty cycles, etc.
        # ala tpDiff
        # Edit: spDiff has been written as an in depth tester of the spatial pooler
        learnOnlyStats = spLearnOnly.getLearningStats()
        learnInferStats = spLearnInfer.getLearningStats()

        success = True
        # Check that the two spatial poolers are equivalent after the same training.
        success = success and spDiff(spLearnInfer, spLearnOnly)
        self.assertTrue(success)
        # Make sure that the pickled and loaded SPs are equivalent.
        spPickle = pickle.dumps(spLearnOnly, protocol=0)
        spLearnOnlyLoaded = pickle.loads(spPickle)
        success = success and spDiff(spLearnOnly, spLearnOnlyLoaded)
        self.assertTrue(success)
        for k in learnOnlyStats.keys():
            if learnOnlyStats[k] != learnInferStats[k]:
                success = False
                print "Stat", k, "is different:", learnOnlyStats[
                    k], learnInferStats[k]

        self.assertTrue(success)
        if success:
            print "Test succeeded"