def __init__(self, factor=1.0, scaleTowardCenter=False): """ Parameters ---------- factor: float How much contrast to produce in the output image relative to the input image. A factor of 0 returns a solid gray image, a factor of 1.0 returns the original image, and higher values return higher-contrast images. scaleTowardCenter: bool If False (the default), uses PIL.ImageEnhance.Contrast. If True, scales the pixel values toward 0.5. """ BaseFilter.__init__(self) if factor < 0: raise ValueError("'factor' must be nonnegative") self.factor = factor self.scaleTowardCenter = scaleTowardCenter if scaleTowardCenter and not (0.0 <= factor <= 1.0): raise ValueError("scaleTowardCenter only supports contrast factors " "between 0 and 1, inclusive.")
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) #Create numpy array from image grayscale data and resize to image dimensions imageArray = numpy.array(image.split()[0].getdata()) imageArray.resize(image.size[1], image.size[0]) #Calculate offset from difficulty level offset = self.difficulty * (self.maxOffset) #Add random change to offset within window size halfWindowSize = 0.1 * offset offset = (offset - halfWindowSize) + halfWindowSize * self.random.random() * ( (-1)**self.random.randint(1, 2)) #Apply random direction offset *= ((-1)**self.random.randint(1, 2)) imageArray += offset #Recreate PIL image newImage = Image.new("L", image.size) newImage.putdata([uint(p) for p in imageArray.flatten()]) newImage.putalpha(image.split()[1]) return newImage
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) # --------------------------------------------------------------------------- # Create the mask around the source image mask = image.split()[-1] if image.mode[-1] != 'A' or isSimpleBBox(mask): mask = createMask(image, threshold=self._threshold, fillHoles=True, backgroundColor=self.background, blurRadius=self._blurRadius, maskScale=self._maskScale) # --------------------------------------------------------------------------- # Process each value newImages = [] for value in self._values: if value is None: value = self.background bg = ImageChops.constant(image, value) newImage = Image.composite(image.split()[0], bg, mask) newImage.putalpha(image.split()[-1]) newImages.append(newImage) if len(newImages) == 1: return newImages[0] else: return newImages
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) base, alpha = image.split() if self.scaleTowardCenter: scale = float(self.factor) assert base.mode == "L" maxValue = 255 # TODO: Determine how to get maximum value __allowed__. offset = ((1.0 - self.factor) / 2.0) * maxValue newImage = ImageMath.eval( "convert(convert(gray, 'F') * scale + offset, mode)", gray=base, scale=scale, offset=offset, mode=base.mode, ) else: contrastEnhancer = ImageEnhance.Contrast(image.split()[0]) newImage = contrastEnhancer.enhance(self.factor) newImage.putalpha(alpha) return newImage
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) s = min(image.size) sizeRange = [0, s] imageArray = numpy.array(image.split()[0].getdata()) newImage = Image.new("LA", image.size) newImage.putdata([uint(p) for p in imageArray]) newImage.putalpha(image.split()[1]) for i in xrange(int(self.difficulty * self.maxLines)): # Generate random line start = (random.randint(sizeRange[0], sizeRange[1]), random.randint(sizeRange[0], sizeRange[1])) end = (random.randint(sizeRange[0], sizeRange[1]), random.randint(sizeRange[0], sizeRange[1])) # Generate random color color = random.randint(0, 255) # Add the line to the image draw = ImageDraw.Draw(newImage) draw.line((start, end), fill=color) return newImage
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) s = min(image.size) sizeRange = [int(0.1 * s), int(0.4 * s)] newArray = numpy.array(image.split()[0].getdata()) newArray.resize(image.size[1], image.size[0]) for j in xrange(self.numRectangles): # Generate random rectange size = (self.random.randint(sizeRange[0], sizeRange[1]), self.random.randint(sizeRange[0], sizeRange[1])) loc = [ self.random.randint(0, image.size[1]), self.random.randint(0, image.size[0]) ] # Move the location so that the rectangle is centered on it loc[0] -= size[0] / 2 loc[1] -= size[1] / 2 # Generate random color color = self.random.randint(0, 255) # Add the rectangle to the image newArray[max(0,loc[0]):min(newArray.shape[0], loc[0]+size[0]), \ max(0,loc[1]):min(newArray.shape[1],loc[1]+size[1])] = color newImage = Image.new("L", image.size) newImage.putdata([uint(p) for p in newArray.flatten()]) newImage.putalpha(image.split()[1]) return newImage
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) s = min(image.size) sizeRange = [int(0.1 * s), int(0.4 * s)] newArray = numpy.array(image.split()[0].getdata()) newArray.resize(image.size[1],image.size[0]) for j in xrange(self.numRectangles): # Generate random rectange size = (self.random.randint(sizeRange[0], sizeRange[1]), self.random.randint(sizeRange[0], sizeRange[1])) loc = [self.random.randint(0,image.size[1]), self.random.randint(0,image.size[0])] # Move the location so that the rectangle is centered on it loc[0] -= size[0]/2 loc[1] -= size[1]/2 # Generate random color color = self.random.randint(0,255) # Add the rectangle to the image newArray[max(0,loc[0]):min(newArray.shape[0], loc[0]+size[0]), \ max(0,loc[1]):min(newArray.shape[1],loc[1]+size[1])] = color newImage = Image.new("L", image.size) newImage.putdata([uint(p) for p in newArray.flatten()]) newImage.putalpha(image.split()[1]) return newImage
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) s = min(image.size) sizeRange = [0, s] imageArray = numpy.array(image.split()[0].getdata()) newImage = Image.new("LA", image.size) newImage.putdata([uint(p) for p in imageArray]) newImage.putalpha(image.split()[1]) for i in xrange(int(self.difficulty*self.maxLines)): # Generate random line start = (random.randint(sizeRange[0], sizeRange[1]), random.randint(sizeRange[0], sizeRange[1])) end = (random.randint(sizeRange[0], sizeRange[1]), random.randint(sizeRange[0], sizeRange[1])) # Generate random color color = random.randint(0,255) # Add the line to the image draw = ImageDraw.Draw(newImage) draw.line((start, end), fill=color) return newImage
def __init__(self, xsize, ysize, c, preserveCenterResolution=False, Debug=False): """ Initializes the kernel matrices, a one-time cost, which are then applied to each image. @param xsize -- The x-dimension size of the desired output @param ysize -- The y-dimension size of the desired output @param c -- Paramaterizes how much the image bends (ie. how steep the fish-eye. c=0 is no distortion. c=3 is severe. @param preserveCenterResolution -- if True, the resolution of the center of the image will be preserved and the edges will be sub-sampled. If False, the center pixels will be blown up to keep the outside corners at the original resolution. @param Debug -- Determines whether to compute and save some intermediate data structures for debugging (deltaxmat, deltaymat, scales). """ BaseFilter.__init__(self) # Init params self._lastOutputImage = None self._xsize = xsize self._ysize = ysize self._c = c self._pcr = preserveCenterResolution self._debug = Debug self._kernelx = None self._kernely = None self._kernel = None self._imgSize = (-1, -1)
def __init__(self, xsize, ysize, c, preserveCenterResolution=False, Debug=False): """ Initializes the kernel matrices, a one-time cost, which are then applied to each image. @param xsize -- The x-dimension size of the desired output @param ysize -- The y-dimension size of the desired output @param c -- Paramaterizes how much the image bends (ie. how steep the fish-eye. c=0 is no distortion. c=3 is severe. @param preserveCenterResolution -- if True, the resolution of the center of the image will be preserved and the edges will be sub-sampled. If False, the center pixels will be blown up to keep the outside corners at the original resolution. @param Debug -- Determines whether to compute and save some intermediate data structures for debugging (deltaxmat, deltaymat, scales). """ BaseFilter.__init__(self) # Init params self._lastOutputImage = None self._xsize = xsize self._ysize = ysize self._c = c self._pcr = preserveCenterResolution self._debug = Debug self._kernelx = None self._kernely = None self._kernel = None self._imgSize = (-1,-1)
def __init__(self, noiseLevel=0.0, doForeground=True, doBackground=False, dynamic=True, noiseThickness=1): """ noiseLevel -- Amount of noise to add, from 0 to 1.0. For black and white images, this means the values of noiseLevel fraction of the pixels will be flipped (e.g. noiseLevel of 0.2 flips 20 percent of the pixels). For grayscale images, each pixel will be modified by up to 255 * noiseLevel (either upwards or downwards). doForeground -- Whether to add noise to the foreground. For black and white images, black pixels are foreground and white pixels are background. For grayscale images, any pixel which does not equal the background color (the ImageSensor 'background' parameter) is foreground, and the rest is background. doBackground -- Whether to add noise to the background (see above). """ BaseFilter.__init__(self) self.noiseLevel = noiseLevel self.doForeground = doForeground self.doBackground = doBackground self.dynamic = dynamic self.noiseThickness = noiseThickness # Generate and save our random state saveState = numpy.random.get_state() numpy.random.seed(0) self._randomState = numpy.random.get_state() numpy.random.set_state(saveState)
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) mode = image.mode originalSize = image.size sizes = [(int(round(image.size[0] * s)), int(round(image.size[1] * s))) for s in self.scales] resizedImages = [] for size in sizes: if size < image.size: resizedImage = image.resize(size, Image.ANTIALIAS) else: resizedImage = image.resize(size, Image.BICUBIC) x = (originalSize[0] - size[0]) / 2 y = (originalSize[1] - size[1]) / 2 newImage = Image.new(mode, originalSize, self.background) newImage.paste(resizedImage, (x, y)) resizedImages.append(newImage) if not self.simultaneous: return resizedImages else: return [resizedImages]
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) mode = image.mode; originalSize = image.size; sizes = [(int(round(image.size[0]*s)), int(round(image.size[1]*s))) for s in self.scales] resizedImages = [] for size in sizes: if size < image.size: resizedImage = image.resize(size,Image.ANTIALIAS) else: resizedImage = image.resize(size,Image.BICUBIC) x = (originalSize[0] - size[0])/2 y = (originalSize[1] - size[1])/2 newImage = Image.new(mode,originalSize,self.background) newImage.paste(resizedImage,(x,y)) resizedImages.append(newImage) if not self.simultaneous: return resizedImages else: return [resizedImages]
def __init__(self, factor=1.0, scaleTowardCenter=False): """ Parameters ---------- factor: float How much contrast to produce in the output image relative to the input image. A factor of 0 returns a solid gray image, a factor of 1.0 returns the original image, and higher values return higher-contrast images. scaleTowardCenter: bool If False (the default), uses PIL.ImageEnhance.Contrast. If True, scales the pixel values toward 0.5. """ BaseFilter.__init__(self) if factor < 0: raise ValueError("'factor' must be nonnegative") self.factor = factor self.scaleTowardCenter = scaleTowardCenter if scaleTowardCenter and not (0.0 <= factor <= 1.0): raise ValueError( "scaleTowardCenter only supports contrast factors " "between 0 and 1, inclusive.")
def __init__(self, shiftSize=1): """ @param stepSize -- number of pixels to shift """ BaseFilter.__init__(self) self.shiftSize = shiftSize
def __init__(self, level=1): """ @param level -- Number of times to blur. """ BaseFilter.__init__(self) self.level = level
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) newImage = ImageOps.flip(image) return newImage
def __init__(self, difficulty = 0.5, seed=None, reproducible=False): """ @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible)
def __init__(self, width, height): """ ** DEPRECATED ** @param width -- Target width, in pixels. @param height -- Target height, in pixels. """ BaseFilter.__init__(self) self.width = width self.height = height
def __init__(self, seed=None, reproducible=False, both=False): """ @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. both -- Whether to also pass through the original image. """ BaseFilter.__init__(self, seed, reproducible) self.both = both
def __init__(self, box): """ @param box -- 4-tuple specifying the left, top, right, and bottom coords. """ BaseFilter.__init__(self) if box[2] <= box[0] or box[3] <= box[1]: raise RuntimeError('Specified box has zero width or height') self.box = box
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) newImage = ImageOps.mirror(image) if not self.both: return newImage else: return [image, newImage]
def __init__(self, factor=1.0): """ @param factor -- Factor by which to brighten the image, a nonnegative number. 0.0 returns a black image, 1.0 returns the original image, and higher values return brighter images. """ BaseFilter.__init__(self) if factor < 0: raise ValueError("'factor' must be a nonnegative number") self.factor = factor
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) if self.box[2] > image.size[0] or self.box[3] > image.size[1]: raise RuntimeError('Crop coordinates exceed image bounds') return image.crop(self.box)
def __init__(self, numRectangles=4, seed=None, reproducible=False): """ @param numRectangles -- Number of rectangles to add. @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible) self.numRectangles = numRectangles
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) brightnessEnhancer = ImageEnhance.Brightness(image.split()[0]) newImage = brightnessEnhancer.enhance(self.factor) newImage.putalpha(image.split()[1]) return newImage
def __init__(self, difficulty = 0.5, seed=None, reproducible=False): """ @param difficulty -- Value between 0.0 and 1.0 that controls how many lines to add in image. @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible) self.difficulty = difficulty #Maximum number of lines to add self.maxLines = 10
def __init__(self, difficulty = 0.5, seed=None, reproducible=False): """ @param difficulty -- Value between 0.0 and 1.0 that controls the intensity of the gradient applied. @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible) self.difficulty = difficulty self.types = ('horizontal', 'vertical', 'circular') self.gradientImages = {}
def __init__(self, difficulty=0.5, seed=None, reproducible=False): """ @param difficulty -- Value between 0.0 and 1.0 that controls how many lines to add in image. @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible) self.difficulty = difficulty #Maximum number of lines to add self.maxLines = 10
def __init__(self, img=None, threshold=10, maskScale=1.0, blurRadius=0.0): """ @param img -- path to background image(s) to use """ BaseFilter.__init__(self) self.bgPath = img self.bgImgs = None self._rng = random.Random() self._rng.seed(42) self._threshold = threshold self._maskScale = maskScale self._blurRadius = blurRadius
def process(self, image): """ image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) if not self.expand and self.targetRatio: # Pad the image to the aspect ratio of the sensor # This allows us to rotate in expand=False without cutting off parts # of the image unnecessarily # Unlike expand=True, the object doesn't get smaller ratio = (image.size[0] / float(image.size[1])) if ratio < self.targetRatio: # Make image wider size = (int(image.size[0] * self.targetRatio / ratio), image.size[1]) newImage = Image.new('LA', size, (self.background, 0)) newImage.paste(image, ((newImage.size[0] - image.size[0])/2, 0)) image = newImage elif ratio > self.targetRatio: # Make image taller size = (image.size[0], int(image.size[1] * ratio / self.targetRatio)) newImage = Image.new('LA', size, (self.background, 0)) newImage.paste(image, (0, (newImage.size[1] - image.size[1])/2)) image = newImage if self.highQuality: resample = Image.BICUBIC else: resample = Image.NEAREST outputs = [] for angle in self.angles: # Rotate the image, which expands it and pads it with black and a 0 # alpha value rotatedImage = image.rotate(angle, resample=resample, expand=self.expand) # Create a new larger image to hold the rotated image # It is filled with the background color and an alpha value of 0 outputImage = Image.new('LA', rotatedImage.size, (self.background, 0)) # Paste the rotated image into the new image, using the rotated image's # alpha channel as a mask # This effectively just fills the area around the rotation with the # background color, and imports the alpha channel from the rotated image outputImage.paste(rotatedImage, None, rotatedImage.split()[1]) outputs.append(outputImage) return outputs
def __init__(self, scales=[1], simultaneous=False): """ ** DEPRECATED ** @param scales -- List of factors used for scaling. scales = [.5, 1] returns two images, one half the size of the original in each dimension, and one which is the original image. @param simultaneous -- Whether the images should be sent out of the sensor simultaneously. """ BaseFilter.__init__(self) self.scales = scales self.simultaneous = simultaneous
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) if image.size == (self.width, self.height): return image # Resize the image targetRatio = self.width / float(self.height) imageRatio = image.size[0] / float(image.size[1]) if self.scaleHeightTo: ySize = self.scaleHeightTo scaleFactor = self.scaleHeightTo / float(image.size[1]) xSize = int(scaleFactor * image.size[0]) elif self.scaleWidthTo: xSize = self.scaleWidthTo scaleFactor = self.scaleWidthTo / float(image.size[0]) ySize = int(scaleFactor * image.size[1]) else: if imageRatio > targetRatio: xSize = self.width scaleFactor = self.width / float(image.size[0]) ySize = int(scaleFactor * image.size[1]) else: ySize = self.height scaleFactor = self.height / float(image.size[1]) xSize = int(scaleFactor * image.size[0]) if (xSize, ySize) < image.size: image = image.resize((xSize, ySize),Image.ANTIALIAS) else: image = image.resize((xSize, ySize),Image.BICUBIC) # Pad the image if necessary if self.pad and image.size != (self.width, self.height): paddedImage = Image.new('L', (self.width, self.height), self.background) alpha = Image.new('L', (self.width, self.height)) paddedImage.putalpha(alpha) paddedImage.paste(image, ((self.width - image.size[0])/2, (self.height - image.size[1])/2)) image = paddedImage return image
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) type = self.random.choice(self.types) #Default matrix matrix = (1, 0, 0, 0, 1, 0) size = list(image.size) newImage = Image.new('LA', size) if type == 'shear_x': shear = self.difficulty*self.maxShear - self.difficulty*0.3 + self.difficulty*0.3*self.random.random() matrix = (1, shear, -shear*size[1], 0, 1, 0) size[0] += int(shear*size[0]) newImage = image.transform(tuple(size), Image.AFFINE, matrix) bbox = list(newImage.split()[1].getbbox()) bbox[1] = 0 bbox[3] = size[1] newImage = newImage.crop(bbox) elif type == 'shear_y': shear = self.difficulty*self.maxShear - self.difficulty*0.3 + self.difficulty*0.3*self.random.random() matrix = (1, 0, 0, shear, 1, -shear*size[0]) size[1] += int(shear*size[1]) newImage = image.transform(tuple(size), Image.AFFINE, matrix) bbox = list(newImage.split()[1].getbbox()) bbox[0] = 0 bbox[2] = size[0] newImage = newImage.crop(bbox) elif type == 'squeeze_x': squeeze = self.minSqueeze - (self.minSqueeze - self.maxSqueeze)*(self.difficulty - self.difficulty*0.3 + self.difficulty*0.3*self.random.random()) matrix = (1/squeeze, 0, 0, 0, 1, 0) newImage = ImageChops.offset(image.transform(tuple(size), Image.AFFINE, matrix), int((size[0] - squeeze*size[0])/2), 0) elif type == 'squeeze_y': squeeze = self.minSqueeze - (self.minSqueeze - self.maxSqueeze)*(self.difficulty - self.difficulty*0.3 + self.difficulty*0.3*self.random.random()) matrix = (1, 0, 0, 0, 1/squeeze, 0) newImage = ImageChops.offset(image.transform(tuple(size), Image.AFFINE, matrix), 0, int((size[1] - squeeze*size[1])/2)) #Appropriate sizing if newImage.size[0] > image.size[0] or newImage.size[1] > image.size[1]: newImage = newImage.resize(image.size) elif newImage.size[1] < image.size[1]: retImage = Image.new('LA', image.size) retImage.paste(newImage, (0, int((image.size[1] - newImage.size[1])/2.0))) newImage = retImage elif newImage.size[0] < image.size[0]: retImage = Image.new('LA', image.size) retImage.paste(newImage, (0, int((image.size[0] - newImage.size[0])/2.0))) return newImage
def process(self, image): """ @param image -- The image to process. Returns a single image, or a list containing one or more images. """ BaseFilter.process(self, image) mask = image.split()[1] for i in xrange(self.level): sharpness_enhancer = ImageEnhance.Sharpness(image.split()[0]) image = sharpness_enhancer.enhance(0.0) image.putalpha(mask) return image
def __init__(self, difficulty = 0.5, seed=None, reproducible=False): """ @param difficulty -- Controls the amount of stretch and shear applied to the image. @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible) self.difficulty = difficulty self.maxShear = 1.0 self.maxSqueeze = 0.1 self.minSqueeze = 1.0 self.types = ('shear_x', 'shear_y', 'squeeze_x', 'squeeze_y')
def __init__(self, difficulty=0.5, seed=None, reproducible=False): """ @param difficulty -- Controls the amount of stretch and shear applied to the image. @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible) self.difficulty = difficulty self.maxShear = 1.0 self.maxSqueeze = 0.1 self.minSqueeze = 1.0 self.types = ('shear_x', 'shear_y', 'squeeze_x', 'squeeze_y')
def __init__(self, value=None, threshold=10, maskScale=1.0, blurRadius=0.0): """ @param value -- If None, the background is filled in with the background color. Otherwise, it is filled with value. If value is a list, then this filter will return multiple images, one for each value """ BaseFilter.__init__(self) if hasattr(value, '__len__'): self._values = value else: self._values = [value] self._threshold = threshold self._maskScale = maskScale self._blurRadius = blurRadius
def __init__(self, width, height, scaleHeightTo=None, scaleWidthTo=None, pad=False): """ ** DEPRECATED ** @param width -- Target width, in pixels. @param height -- Target height, in pixels. @param pad -- Whether to pad the image with the background color in order to fit the specified size exactly. """ BaseFilter.__init__(self) self.width = width self.height = height self.pad = pad self.scaleHeightTo = scaleHeightTo self.scaleWidthTo = scaleWidthTo
def __init__(self, difficulty=0.5, seed=None, reproducible=False): """ @param difficulty -- Value between 0.0 and 1.0 that dictates how far to shift the image histogram. The direction will be random, and a random offset will be added. @param seed -- Seed value for random number generator, to produce reproducible results. @param reproducible -- Whether to seed the random number generator based on a hash of the image pixels upon each call to process(). 'seed' and 'reproducible' cannot be used together. """ BaseFilter.__init__(self, seed, reproducible) if difficulty < 0.0 or difficulty > 1.0: raise RuntimeError("difficulty must be between 0.0 and 1.0") self.difficulty = difficulty #Maximum histogram shift - half the grayscale band (0-255) self.maxOffset = 128